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There are many ways to compute the cup product structure in the mod-2 coho-
mology of real projective spaces, RPn, but most of them are not directly accessible
after you have learned the definition of the cup product. Hatcher uses the Künneth
theorem and a bit of geometry. Other, more conceptual proofs use the Gysin se-
quence or Poincaré duality for manifolds. This note is to show how to compute the
result using nothing but the combinatorial definition of the cup product on simpli-
cial complexes, and a suitable simplicial complex structure on RPn. I assume as
known that

Hj(RPn;Z/2Z) ∼=

{
Z/2Z; 0 ≤ j ≤ n
0; otherwise.

Recall that RPn−1 can be thought of as the standard (n − 1)-sphere with an-
tipodal points identified. We give RPn−1 the octahedral triangulation:

Let e+i be the ith standard basis vector of Rn, and denote by e−i its negative,
−e+i . (It will become clear in a moment why we want to avoid writing just ei and
−ei.) The (n − 1)-dimensional octahedron Sn is defined as the boundary of the
complex hull of the 2n vectors e±1 , . . . , e

±
n . This is an (n−1)-dimensional simplicial

complex homeomorphic to the (n − 1)-dimensional sphere, whose k-simplices are
the complex hulls of sets of the form {eε1i1 , e

ε2
i2
, . . . , eεkik }, where 1 ≤ i1 < · · · < ik ≤ n

and εj ∈ {+,−}. We will denote this simplex by eε1i1 · · · e
εk
ik

. Thus there are total of

2k
(
n
k

)
many k-simplices. The faces of a k-simplex are given by omitting one of the

e
εj
ij

-factors.

Note that Sn has an involution given by sending a point x to −x. In terms of
simplices, it sends eε1i1 · · · e

εk
ik

to e−ε1i1
· · · e−εkik

, so it respects the simplicial structure.

Thus the quotient Pn = Sn/±1 is a simplicial model for RPn−1 = Sn−1/±1.
Consider the simplicial (n− 1)-chain

[Pn] =
∑

ε∈{±}n−1

eε11 · · · e
εn−1

n−1 en ∈ Cn−1(Pn).

This is a cycle modulo 2 because every (n− 1)-simplex e±1 · · · ê
±
k · · · e

±
n−1en occurs

as a face of exactly two 2-simplices (those containing e+k and those containing e−k ).
This is also true for the (n−1)-simplex eε11 · · · e

εn−1

n−1 , which is a face of eε11 · · · e
εn−1

n−1 en

and of e−ε11 · · · e−εn−1

n−1 en by the identification of antipodal simplices. So [Pn] is the
unique nontrivial element in Hn−1(Pn;Z/2Z).

Now let us define a 1-cochain φ : C1(Pn)→ Z/2Z as follows:

φ(e+i e
+
j ) =

{
1; j − i odd

0; j − i even;
φ(e−i e

+
j ) =

{
0; j − i odd

1; j − i even.

To see that this is a cocycle, we have to verify that it vanishes on the boundary of
e±i e

±
j e
±
k , which is e±i e

±
j − e

±
i e
±
k + e±j e

±
k . (Signs do not matter since φ takes values
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in Z/2Z.) This is easy: if all the ± signs are equal then either j− i, k− i, and k− j
are all even (φ = 0 on every summand), or exactly two of them are odd (φ = 1 on
exactly 2). Otherwise, two of the ± are the same and the third is different, let’s
say e+i e

+
j e
−
k . Then the same argument works for the numbers {i, j, k + 1}.

Now, by the formula for the cup product, we have that

φn−1([Pn]) =
∑

ε∈{+,−}n−1

φ(eε11 e
ε2
2 )φ(eε22 e

ε3
3 ) · · ·φ(e

εn−1

n−1 en).

By the definition of φ, it is nonzero on exactly one factor, namely when ε =
(+, . . . ,+). Thus

φn−1 6= 0.

This shows immediately that H∗(RPn−1;Z/2Z) ∼= Z/2Z[φ]/(φn).


