STOCKHOLMS UNIVERSITET
MATEMATISKA INSTITUTIONEN
Avd. Matematik,
Lecturer: P. Alexandersson
Examiner: Sofia Tirabassi

Final exam
Mathematical Methods for Economists
14 March 2022

Instructions:

- You will be provided a calculator.
- Start every problem on a new page, and write at the top of the page which problem it belongs to.
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear solutions even if the answer is correct.
- Write clearly and legibly.
- Where applicable, indicate your final answer clearly by putting A BOX around it.

There are six problems, some with multiple parts. The problems are not ordered according to difficulty.

Problem 1. (5p) Compute the degree 2 Taylor polynomial of $f(x)=x \cdot e^{1 / x}$ around the point $x_{0}=-1$. The answer should be expressed on the form $a x^{2}+b x+c$.

Problem 2. Consider the function

$$
f(x)=(2 x-7)(x+4) \sum_{k=0}^{\infty}\left(\frac{x}{4}\right)^{k} .
$$

(a) (1p) Show that $f(x)$ is defined on the interval $(-4,4)$ but nowhere else.
(b) (2p) Find all critical points of $f(x)$.
(c) (2p) Find the minimum value of $f(x)$ on its domain, and sketch the graph. Pay extra attention to the endpoints of the domain.

Problem 3. Solve the following problems:
(a) (3p) Compute the integral $\int \frac{\ln (\sqrt{x}+1)}{\sqrt{x}} d x$.
(b) (2p) Compute the limit $\lim _{t \rightarrow \infty} \int_{t}^{2 t} \frac{1+x}{x^{2}} d x$.

Problem 4. For every $C \in \mathbb{R}$, the equation $\sqrt{x} y^{2}+x \sqrt{y}+\frac{4}{\sqrt{x y}}=C$ defines a curve in the plane.
(a) (1p) Determine C, such that the point $(4,1)$ lies on the curve.
(b) (3p) For this value of C, find the slope of the tangent line at $(4,1)$.
(c) (1p) Find the equation of the tangent line at $(4,1)$.

Problem 5. Consider the function $f(x, y)=2 x^{2}+2 y^{2}+3 x+4 y$, and let D be the domain determined by the inequalities $x \geq 0$ and $x^{2}+y^{2} \leq 16$.
(a) (1p) Draw the domain D.
(b) (1p) Find all critical points of f and determine their type.
(c) (3p) Find the maximum of f on D.

Problem 6. Consider the matrices

$$
A=\left(\begin{array}{ll}
2 & k \\
1 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \quad X=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) .
$$

(a) (1p) Compute $|A|$ as a function of k.
(b) (1p) For what values of k is $|A|$ non-zero?
(c) (3p) For the values of k you got in (b), solve the matrix equation $A X=B$. You should find x, y, z and w; some of these might depend on k.

Formula for geometric series

We have $1+r+r^{2}+r^{3}+\cdots+r^{n-1}=\frac{1-r^{n}}{1-r}$, and $1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}$ whenever $-1<r<1$. The infinite series does not converge if $r \geq 1$ or $r \leq-1$.

Formula for Taylor polynomials

Taylor polynomial of degree k for $f(x)$ at $x=a$, is

$$
f(a)+f^{\prime}(a) \frac{(x-a)}{1!}+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots+f^{(k)}(a) \frac{(x-a)^{k}}{k!}
$$

Characterization of critical points

Let $f(x, y)$ be differentiable, and let $H=\left|\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right|$. If, at critical point (x, y) we have

- $H>0$ and $f_{x x}^{\prime \prime}>0, f_{y y}^{\prime \prime}>0$ then f has a local minimum at this critical point.
- $H>0$ and $f_{x x}^{\prime \prime}<0, f_{y y}^{\prime \prime}<0$ then f has a local maximum at this critical point.
- $H<0$ then f has neither a local maximum or minimum at this critical point.

