Algebraic Topology, Homework Assignment 8, Due Thursday March 31, 2022

(1) (5 points)

Derive the following theorem from the Borsuk-Ulam theorem: if \mathbf{S}^n is covered by n+1 compact sets A_1, \ldots, A_{n+1} then one of these sets must contain a pair of antipodal points (i.e. x and -x). Hint: Suppose not, and construct a map $f: \mathbf{S}^n \to \mathbf{R}^n$ such that $f_i(x) = 0$ if $x \in A_i$ and $f_i(x) = 1$ if $-x \in A_i$ for 1 < i < n.

- (2) (5 points)
 - (a) Show that the cup product is well-defined on relative cohomology groups:

$$H^*(X, A) \otimes H^*(X, B) \xrightarrow{\cup} H^*(X, A \cup B).$$

- (b) Show that if X can be covered with n contractible open sets U_i , then all n-fold cup products in $\tilde{H}^*(X)$ vanish.
- (c) Conclude that the cup product is always zero in $\tilde{H}^*(\Sigma X)$, where ΣX denotes the suspension of the space X.