Algebraic Topology, Homework Assignment 11, Due Thursday April 21, 2022

- (1) (5 points)
 - Let M be a manifold of dimension n > 0 and for $k \ge 2$, consider the space $\binom{M}{k}$ of k-element subsets of M, topologized as a subset of M^k/Σ_k , where the symmetric group Σ_k acts by permutations of the factors. Show that $\binom{M}{k}$ is a manifold, but M^k/Σ_k is not.
- (2) (5 points; generalizing Hatcher Ex. 3.3.2) Let M be a connected manifold of dimension n. A k-dimensional submanifold of M is a subspace N such that for each $x \in N$ there exists a neighborhood U in M, containing x, and a homeomorphism $\phi \colon U \to V$ onto an open subspace V of \mathbf{R}^n in such a way that $\phi^{-1}(V \cap \mathbf{R}^k)$ is an open neighborhood of x in N.

Let N be a submanifold of codimensions greater than one (i.e. dimension less than n-1). Show:

- (a) M N is a connected manifold.
- (b) M is orientable if and only if M-N is orientable.