Examinator: Jonathan Rohleder

1. $(\mathbf{4} \mathbf{p})$ Solve the initial value problem $y^{\prime}=x y^{2}+x, y(0)=1$.
2. (6p) Let $a \in\{1, \ldots, 12\}$ be the number of your month of birth. (For instance, $a=1$ if you are born in January, $a=7$ if you are born in July, or $a=10$ if you are born in October.) For your a, determine the general solution to the system

$$
\left\{\begin{array}{l}
x^{\prime}=-x+y \\
y^{\prime}=-x-3 y \\
z^{\prime}=-x-(a+3) y+a z
\end{array}\right.
$$

3. (4p) Consider the initial value problem

$$
y^{\prime}=2 x+y+1, \quad y(1)=1
$$

Compute a numerical solution at $x=3$ by using the (forward) Euler method with step length $h=1 / 2$.
4. (4p) Show that for each $x_{0} \in \mathbb{R}$ the initial value problem

$$
y^{\prime}=\frac{3|y| \cos x}{2+x^{2}}, \quad y\left(x_{0}\right)=0
$$

has a unique solution defined on all of \mathbb{R}.
5. (6p) Let again a be the number of your month of birth. Determine all equilibrium points of the autonomous system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x^{2}-y^{2}, \\
\frac{d y}{d t}=(-1)^{a}(a+1) x+y-1,
\end{array}\right.
$$

and investigate whether these equilibrium points are asymptotically stable.
6. (6p) Let again a be the number of your month of birth. Consider the boundary value problem

$$
\begin{equation*}
2 y^{\prime \prime}-a y^{\prime}=f(x) \text { on }[0,1], \quad y(0)=c_{0}, \quad y(1)=c_{1} . \tag{1}
\end{equation*}
$$

(a) Prove that for each $f \in \mathcal{C}[0,1]$ and all $c_{0}, c_{1} \in \mathbb{R}$ the problem (1) has a unique solution.
(b) Solve the problem (1) for $f(x)=e^{a x}, c_{0}=0$ and $c_{1}=e^{a} / a^{2}$.

