MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Jonathan Rohleder

Written examination in
Mathematics III - ODE
1 June 2021

1. (4p) Solve the initial value problem $y^{\prime}=x y^{2}+x, y(0)=1$.

Solution: The DE may be rewritten $y^{\prime}=x\left(y^{2}+1\right)$ and, hence, has separate variables. Note that the y-dependent factor never gets zero. Dividing by $y^{2}+1$ and integrating yields

$$
\int \frac{1}{1+y^{2}} d y=\int x d x
$$

equivalently $\arctan y=\frac{1}{2} x^{2}+C$ with $C \in \mathbb{R}$. Thus $y=\tan \left(\frac{x^{2}}{2}+C\right)$ is the general solution to the DE. To satisfy the initial condition we need

$$
1=y(0)=\tan C=\frac{\sin C}{\cos C}
$$

which has $C=\pi / 4$ as a solution. Thus the unique solution to the BVP is

$$
y=\tan \left(\frac{x^{2}}{2}+\frac{\pi}{4}\right)
$$

2. (6p) Let $a \in\{1, \ldots, 12\}$ be the number of your month of birth. (For instance, $a=1$ if you are born in January, $a=7$ if you are born in July, or $a=10$ if you are born in October.) For your a, determine the general solution to the system

$$
\left\{\begin{array}{l}
x^{\prime}=-x+y \\
y^{\prime}=-x-3 y \\
z^{\prime}=-x-(a+3) y+a z
\end{array}\right.
$$

Solution: We sketch a possible solution in dependence of the parameter a. The system is homogeneous and may be written

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \text { where } \quad A=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & -3 & 0 \\
-1 & -(a+3) & a
\end{array}\right)
$$

The characteristic polynomial of A is $p_{A}(\lambda)=(\lambda+2)^{2}(a-\lambda)$, which leads to the eigenvalues -2 (with algebraic multiplicity 2) and a with multiplicity one. Computing the corresponding eigenvectors yields $(-1,1,1)^{\top}$ for $\lambda=-2$ and $(0,0,1)^{\top}$ for $\lambda=a$. In particular, A is not diagonalizable. In order to find a block-diagonalization, one may solve the linear system of equations $(A-(-2)) v=(-1,1,1)^{\top}$. If v is a solution then v together with $(-1,1,1)^{\top}$ form a basis of $\operatorname{ker}(A-(-2))^{2}$. The equations to solve read

$$
\left(\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
-1 & -1 & 0 & 1 \\
-1 & -(a+3) & a+2 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -(a+2) & a+2 & 0
\end{array}\right)
$$

by Gauss elimination. Thus $v=(-2,1,1)^{\top}$ is a solution. Set

$$
T:=\left(\begin{array}{ccc}
-1 & -2 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

formed out of the eigenvectors and v as its columns. We compute

$$
T^{-1} A T=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & a
\end{array}\right)=: D
$$

a block diagonalization. Now we can compute $e^{t A}$. For the upper block we get

$$
e^{t\left(\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right)}=e^{\left(\begin{array}{cc}
-2 t & 0 \\
0 & -2 t
\end{array}\right)} e^{\left(\begin{array}{ll}
0 & t \\
0 & 0
\end{array}\right)}=\left(\begin{array}{cc}
e^{-2 t} & 0 \\
0 & e^{-2 t}
\end{array}\right)\left(I+\left(\begin{array}{cc}
0 & t \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
0 & e^{-2 t}
\end{array}\right) .
$$

Therefore

$$
e^{t A}=T e^{t D} T^{-1}=T\left(\begin{array}{ccc}
e^{-2 t} & t e^{-2 t} & 0 \\
0 & e^{-2 t} & 0 \\
0 & 0 & e^{a t}
\end{array}\right) T^{-1}=\left(\begin{array}{ccc}
t e^{-2 t}+e^{-2 t} & t e^{-2 t} & 0 \\
-t e^{-2 t} & e^{-2 t}-t e^{-2 t} & 0 \\
-t e^{-2 t} & -e^{a t}-t e^{-2 t}+e^{-2 t} & e^{a t}
\end{array}\right)
$$

and we end up with the general solution

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)(t)=c_{1}\left(\begin{array}{c}
t e^{-2 t}+e^{-2 t} \\
-t e^{-2 t} \\
-t e^{-2 t}
\end{array}\right)+c_{2}\left(\begin{array}{c}
t e^{-2 t} \\
e^{-2 t}-t e^{-2 t} \\
-e^{a t}-t e^{-2 t}+e^{-2 t}
\end{array}\right)+c_{3}\left(\begin{array}{c}
0 \\
0 \\
e^{a t}
\end{array}\right)
$$

with $c_{1}, c_{2}, c_{3} \in \mathbb{R}$.
3. ($\mathbf{4} \mathbf{p}$) Consider the initial value problem

$$
y^{\prime}=2 x+y+1, \quad y(1)=1
$$

Compute a numerical solution at $x=3$ by using the (forward) Euler method with step length $h=1 / 2$.
Solution: We have $x_{0}=1, y_{0}=1$. As $h=1 / 2$ we get

$$
\begin{aligned}
& x_{1}=x_{0}+1 / 2=3 / 2, \\
& y_{1}=y_{0}+\frac{1}{2}\left(2 x_{0}+y_{0}+1\right)=1+4 / 2=3, \\
& x_{2}=x_{1}+1 / 2=2, \\
& y_{2}=y_{1}+\frac{1}{2}\left(2 x_{1}+y_{1}^{2}+1\right)=3+7 / 2=13 / 2, \\
& x_{3}=5 / 2 \\
& y_{3}=13 / 2+\frac{1}{2}(4+13 / 2+1)=49 / 4, \\
& x_{4}=3, \\
& y_{4}=49 / 4+\frac{1}{2}(5+49 / 4+1)=171 / 8 .
\end{aligned}
$$

As $x_{4}=3, y_{4}=171 / 8$ is the numerical approximation after four Euler steps of length $h=1 / 2$ of $y(3)$.
4. (4p) Show that for each $x_{0} \in \mathbb{R}$ the initial value problem

$$
y^{\prime}=\frac{3|y| \cos x}{2+x^{2}}, \quad y\left(x_{0}\right)=0
$$

has a unique solution defined on all of \mathbb{R}.

Solution: Consider the infinite strip $\left[x_{0}-\alpha, x_{0}+\alpha\right] \times \mathbb{R}$ for $\alpha \in \mathbb{R}$. The right-hand side $f(x, y)=\frac{3|y| \cos x}{2+x^{2}}$ is continuous on the whole strip as its numerator and denominator are continuous functions and the denominator never gets zero. Moreover, it satisfies a Lipschitz condition w.r.t. y in the strip since

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|=\frac{3|\cos x|}{2+x^{2}}| | y_{1}\left|-\left|y_{2}\right|\right| \leq \frac{3}{2}\left|y_{1}-y_{2}\right| .
$$

This guarantees a unique solution defined on the whole interval $\left[x_{0}-\alpha, x_{0}+\alpha\right]$. As this is true for each α and the Lipschitz constant is independent of α (we may choose $L=\frac{3}{2}$), it follows that the solution is defined on all of \mathbb{R}. (Of course this unique solution is the constant zero function.)
5. (6p) Let again a be the number of your month of birth. Determine all equilibrium points of the autonomous system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x^{2}-y^{2} \\
\frac{d y}{d t}=(-1)^{a}(a+1) x+y-1
\end{array}\right.
$$

and investigate whether these equilibrium points are asymptotically stable.
Solution: We again provide a sketch of a solution in dependence of the parameter a. We distinguish two cases.
a even: Here we have

$$
f(x, y)=\binom{x^{2}-y^{2}}{(a+1) x+y-1}, \quad f^{\prime}(x, y)=\left(\begin{array}{cc}
2 x & -2 y \\
a+1 & 1
\end{array}\right) .
$$

The equations for equilibrium points are thus $x^{2}=y^{2}$ and $(a+1) x+y-1=0$. The first one gives $y= \pm x$. If $y=x$ then from the second equation we get $(a+2) x=1$, i.e. $x=1 /(a+2)$. On the other hand, if $y=-x$ then we obtain $x=1 / a$. Thus we have equilibrium points

$$
\left(\frac{1}{a+2}, \frac{1}{a+2}\right), \quad\left(\frac{1}{a},-\frac{1}{a}\right) .
$$

Stability: By linearization. The matrix

$$
f^{\prime}\left(\frac{1}{a+2}, \frac{1}{a+2}\right)=\left(\begin{array}{cc}
2 /(a+2) & -2 /(a+2) \\
a+1 & 1
\end{array}\right)
$$

has eigenvalues

$$
\frac{1}{2(a+2)}\left(a+4 \pm \sqrt{-7 a^{2}-24 a-16}\right) .
$$

The term under the square root gets negative for all natural numbers a and therefore the eigenvalues are non-real with real part $(a+4) /(2(a+2))$, which is positive. Hence $(1 /(a+2), 1 /(a+2))$ is unstable. For the other point we have

$$
f^{\prime}\left(\frac{1}{a},-\frac{1}{a}\right)=\left(\begin{array}{cc}
2 / a & 2 / a \\
a+1 & 1
\end{array}\right)
$$

with eigenvalues

$$
\frac{1}{2 a}\left(a+2 \pm \sqrt{9 a^{2}+4 a+4}\right) .
$$

Here the eigenvalues are real but at least the one with + is positive. Hence also $(1 / a,-1 / a)$ is unstable.
a odd: Here we have

$$
f(x, y)=\binom{x^{2}-y^{2}}{-(a+1) x+y-1}, \quad f^{\prime}(x, y)=\left(\begin{array}{cc}
2 x & -2 y \\
-(a+1) & 1
\end{array}\right) .
$$

The equations for equilibrium points are thus $x^{2}=y^{2}$ and $-(a+1) x+y-1=0$. The first one gives $y= \pm x$. If $y=x$ then from the second equation we get $-a x=1$, i.e. $x=-1 / a$. On the other hand, if $y=-x$ then we obtain $x=-1 /(a+2)$. Thus we have equilibrium points

$$
\left(-\frac{1}{a+2}, \frac{1}{a+2}\right), \quad\left(-\frac{1}{a},-\frac{1}{a}\right) .
$$

Stability: By linearization. The matrix

$$
f^{\prime}\left(-\frac{1}{a+2}, \frac{1}{a+2}\right)=\left(\begin{array}{cc}
-2 /(a+2) & -2 /(a+2) \\
-(a+1) & 1
\end{array}\right)
$$

has eigenvalues

$$
\frac{1}{2(a+2)}\left(a \pm \sqrt{9 a^{2}+32 a+32}\right) .
$$

This is always real and at least the solution with + is positive, thus $(-1 /(a+2), 1 /(a+2))$ is unstable. For the other point we have

$$
f^{\prime}\left(-\frac{1}{a},-\frac{1}{a}\right)=\left(\begin{array}{cc}
-2 / a & 2 / a \\
-(a+1) & 1
\end{array}\right)
$$

with eigenvalues

$$
\frac{1}{2 a}\left(a-2 \pm \sqrt{-7 a^{2}-4 a+4}\right)
$$

The term under the square root is negative for each integer a, hence these are non-real eigenvalues with real part $(a-2) /(2 a)$. This real part is negative if $a=1$, otherwise positive. Thus if $a=1$ then $(-1 / a,-1 / a)$ is asymptotically stable. For all other odd $a,(-1 / a,-1 / a)$ is unstable.
6. (6p) Let again a be the number of your month of birth. Consider the boundary value problem

$$
\begin{equation*}
2 y^{\prime \prime}-a y^{\prime}=f(x) \text { on }[0,1], \quad y(0)=c_{0}, \quad y(1)=c_{1} \tag{1}
\end{equation*}
$$

(a) Prove that for each $f \in \mathcal{C}[0,1]$ and all $c_{0}, c_{1} \in \mathbb{R}$ the problem (1) has a unique solution.
(b) Solve the problem (1) for $f(x)=e^{a x}, c_{0}=0$ and $c_{1}=e^{a} / a^{2}$.

Solution: Again we show a parameter-dependent solution.
(a) The characteristic polynomial of the homogeneous equation equals $p(\lambda)=2 \lambda^{2}-a \lambda=\lambda(2 \lambda-a)$ and has its roots at $\lambda=0$ and $\lambda=a / 2$. Thus the general solution of the homogeneous DE equals $y(x)=\alpha+\beta e^{a x / 2}$ with $\alpha, \beta \in \mathbb{R}$. By Theorem 1 on p .178 in the course book it suffices to show that the homogeneous DE with homogeneous boundary conditions $y(0)=y(1)=0$ is uniquely solvable. In fact,

$$
\begin{aligned}
& 0=y(0)=\alpha+\beta \\
& 0=y(1)=\alpha+\beta e^{a / 2}
\end{aligned}
$$

is the homogeneous linear system of equations described by the matrix

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & e^{a / 2}
\end{array}\right)
$$

which has determinant $e^{a / 2}-1 \neq 0$. Hence the homogeneous BVP has only the trivial solution, which implies assertion (a).
(b) We try an ansatz of the form $y_{\mathrm{p}}(x)=\gamma e^{a x}$. This satisfies the inhomogeneous DE if

$$
e^{a x}=2 y_{\mathrm{p}}^{\prime \prime}(x)-a y_{\mathrm{p}}^{\prime}(x)=\gamma\left(2 a^{2}-a^{2}\right) e^{a x}=\gamma a^{2} e^{a x}
$$

This is satisfied if $\gamma=1 / a^{2}$. Hence $y_{\mathrm{p}}(x)=e^{a x} / a^{2}$, and therefore the general solution to the inhomogeneous DE is

$$
y(x)=\alpha+\beta e^{a x / 2}+\frac{e^{a x}}{a^{2}} .
$$

We determine α and β in order to satisfy the boundary conditions:

$$
\begin{aligned}
0 & =y(0)=\alpha+\beta+\frac{1}{a^{2}}, \\
\frac{e^{a}}{a^{2}} & =y(1)=\alpha+\beta e^{a / 2}+\frac{e^{a}}{a^{2}}
\end{aligned}
$$

has the solutions

$$
\alpha=-\frac{e^{a / 2}}{a^{2}\left(e^{a / 2}-1\right)}, \quad \beta=\frac{1}{a^{2}\left(e^{a / 2}-1\right)} .
$$

Hence the solution to the boundary value problem is

$$
y(x)=-\frac{e^{a / 2}}{a^{2}\left(e^{a / 2}-1\right)}+\frac{1}{a^{2}\left(e^{a / 2}-1\right)} e^{a x / 2}+\frac{e^{a x}}{a^{2}} .
$$

