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1. (4p) Solve the initial value problem y′ = xy2 + x, y(0) = 1.

Solution: The DE may be rewritten y′ = x(y2 + 1) and, hence, has separate variables. Note that the
y-dependent factor never gets zero. Dividing by y2 + 1 and integrating yields∫

1

1 + y2
dy =

∫
xdx,

equivalently arctan y = 1
2x

2 +C with C ∈ R. Thus y = tan(x
2

2 +C) is the general solution to the DE.
To satisfy the initial condition we need

1 = y(0) = tanC =
sinC

cosC
,

which has C = π/4 as a solution. Thus the unique solution to the BVP is

y = tan

(
x2

2
+
π

4

)
.

2. (6p) Let a ∈ {1, . . . , 12} be the number of your month of birth. (For instance, a = 1 if you are born
in January, a = 7 if you are born in July, or a = 10 if you are born in October.) For your a, determine
the general solution to the system 

x′ = −x+ y,

y′ = −x− 3y,

z′ = −x− (a+ 3)y + az.

Solution:We sketch a possible solution in dependence of the parameter a. The system is homogeneous
and may be written x′y′

z′

 = A

xy
z

 , where A =

−1 1 0
−1 −3 0
−1 −(a+ 3) a

 .

The characteristic polynomial of A is pA(λ) = (λ+2)2(a−λ), which leads to the eigenvalues −2 (with
algebraic multiplicity 2) and a with multiplicity one. Computing the corresponding eigenvectors yields
(−1, 1, 1)> for λ = −2 and (0, 0, 1)> for λ = a. In particular, A is not diagonalizable. In order to �nd
a block-diagonalization, one may solve the linear system of equations (A− (−2))v = (−1, 1, 1)>. If v is
a solution then v together with (−1, 1, 1)> form a basis of ker(A− (−2))2. The equations to solve read 1 1 0

−1 −1 0
−1 −(a+ 3) a+ 2

∣∣∣∣∣∣
−1
1
1

 ∼
1 1 0
0 0 0
0 −(a+ 2) a+ 2

∣∣∣∣∣∣
−1
0
0


by Gauss elimination. Thus v = (−2, 1, 1)> is a solution. Set

T :=

−1 −2 0
1 1 0
1 1 1

 ,



formed out of the eigenvectors and v as its columns. We compute

T−1AT =

−2 1 0
0 −2 0
0 0 a

 =: D,

a block diagonalization. Now we can compute etA. For the upper block we get

e
t

−2 1
0 −2


= e

−2t 0
0 −2t


e

0 t
0 0


=

(
e−2t 0
0 e−2t

)(
I +

(
0 t
0 0

))
=

(
e−2t te−2t

0 e−2t

)
.

Therefore

etA = TetDT−1 = T

e−2t te−2t 0
0 e−2t 0
0 0 eat

T−1 =

te−2t + e−2t te−2t 0
−te−2t e−2t − te−2t 0
−te−2t −eat − te−2t + e−2t eat

 ,

and we end up with the general solutionxy
z

 (t) = c1

te−2t + e−2t

−te−2t
−te−2t

+ c2

 te−2t

e−2t − te−2t
−eat − te−2t + e−2t

+ c3

 0
0
eat


with c1, c2, c3 ∈ R.

3. (4p) Consider the initial value problem

y′ = 2x+ y + 1, y(1) = 1.

Compute a numerical solution at x = 3 by using the (forward) Euler method with step length h = 1/2.

Solution: We have x0 = 1, y0 = 1. As h = 1/2 we get

x1 = x0 + 1/2 = 3/2,

y1 = y0 +
1

2
(2x0 + y0 + 1) = 1 + 4/2 = 3,

x2 = x1 + 1/2 = 2,

y2 = y1 +
1

2
(2x1 + y21 + 1) = 3 + 7/2 = 13/2,

x3 = 5/2,

y3 = 13/2 +
1

2
(4 + 13/2 + 1) = 49/4,

x4 = 3,

y4 = 49/4 +
1

2
(5 + 49/4 + 1) = 171/8.

As x4 = 3, y4 = 171/8 is the numerical approximation after four Euler steps of length h = 1/2 of y(3).

4. (4p) Show that for each x0 ∈ R the initial value problem

y′ =
3|y| cosx
2 + x2

, y(x0) = 0,

has a unique solution de�ned on all of R.
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Solution: Consider the in�nite strip [x0−α, x0+α]×R for α ∈ R. The right-hand side f(x, y) = 3|y| cos x
2+x2

is continuous on the whole strip as its numerator and denominator are continuous functions and the
denominator never gets zero. Moreover, it satis�es a Lipschitz condition w.r.t. y in the strip since

|f(x, y1)− f(x, y2)| =
3| cosx|
2 + x2

∣∣|y1| − |y2|∣∣ ≤ 3

2
|y1 − y2|.

This guarantees a unique solution de�ned on the whole interval [x0−α, x0+α]. As this is true for each
α and the Lipschitz constant is independent of α (we may choose L = 3

2 ), it follows that the solution
is de�ned on all of R. (Of course this unique solution is the constant zero function.)

5. (6p) Let again a be the number of your month of birth. Determine all equilibrium points of the
autonomous system {

dx
dt = x2 − y2,
dy
dt = (−1)a(a+ 1)x+ y − 1,

and investigate whether these equilibrium points are asymptotically stable.

Solution: We again provide a sketch of a solution in dependence of the parameter a. We distinguish
two cases.

a even: Here we have

f(x, y) =

(
x2 − y2

(a+ 1)x+ y − 1

)
, f ′(x, y) =

(
2x −2y
a+ 1 1

)
.

The equations for equilibrium points are thus x2 = y2 and (a + 1)x + y − 1 = 0. The �rst one gives
y = ±x. If y = x then from the second equation we get (a+ 2)x = 1, i.e. x = 1/(a+ 2). On the other
hand, if y = −x then we obtain x = 1/a. Thus we have equilibrium points(

1

a+ 2
,

1

a+ 2

)
,

(
1

a
,−1

a

)
.

Stability: By linearization. The matrix

f ′
(

1

a+ 2
,

1

a+ 2

)
=

(
2/(a+ 2) −2/(a+ 2)
a+ 1 1

)
has eigenvalues

1

2(a+ 2)

(
a+ 4±

√
−7a2 − 24a− 16

)
.

The term under the square root gets negative for all natural numbers a and therefore the eigenvalues
are non-real with real part (a+4)/(2(a+2)), which is positive. Hence (1/(a+2), 1/(a+2)) is unstable.
For the other point we have

f ′
(
1

a
,−1

a

)
=

(
2/a 2/a
a+ 1 1

)
with eigenvalues

1

2a

(
a+ 2±

√
9a2 + 4a+ 4

)
.

Here the eigenvalues are real but at least the one with + is positive. Hence also (1/a,−1/a) is unstable.
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a odd: Here we have

f(x, y) =

(
x2 − y2

−(a+ 1)x+ y − 1

)
, f ′(x, y) =

(
2x −2y

−(a+ 1) 1

)
.

The equations for equilibrium points are thus x2 = y2 and −(a+ 1)x+ y − 1 = 0. The �rst one gives
y = ±x. If y = x then from the second equation we get −ax = 1, i.e. x = −1/a. On the other hand, if
y = −x then we obtain x = −1/(a+ 2). Thus we have equilibrium points(

− 1

a+ 2
,

1

a+ 2

)
,

(
−1

a
,−1

a

)
.

Stability: By linearization. The matrix

f ′
(
− 1

a+ 2
,

1

a+ 2

)
=

(
−2/(a+ 2) −2/(a+ 2)
−(a+ 1) 1

)
has eigenvalues

1

2(a+ 2)

(
a±

√
9a2 + 32a+ 32

)
.

This is always real and at least the solution with + is positive, thus (−1/(a+2), 1/(a+2)) is unstable.
For the other point we have

f ′
(
−1

a
,−1

a

)
=

(
−2/a 2/a
−(a+ 1) 1

)
with eigenvalues

1

2a

(
a− 2±

√
−7a2 − 4a+ 4

)
.

The term under the square root is negative for each integer a, hence these are non-real eigenvalues
with real part (a− 2)/(2a). This real part is negative if a = 1, otherwise positive. Thus if a = 1 then
(−1/a,−1/a) is asymptotically stable. For all other odd a, (−1/a,−1/a) is unstable.

6. (6p) Let again a be the number of your month of birth. Consider the boundary value problem

2y′′ − ay′ = f(x) on [0, 1], y(0) = c0, y(1) = c1. (1)

(a) Prove that for each f ∈ C[0, 1] and all c0, c1 ∈ R the problem (1) has a unique solution.

(b) Solve the problem (1) for f(x) = eax, c0 = 0 and c1 = ea/a2.

Solution: Again we show a parameter-dependent solution.

(a) The characteristic polynomial of the homogeneous equation equals p(λ) = 2λ2 − aλ = λ(2λ − a)
and has its roots at λ = 0 and λ = a/2. Thus the general solution of the homogeneous DE equals
y(x) = α + βeax/2 with α, β ∈ R. By Theorem 1 on p. 178 in the course book it su�ces to show that
the homogeneous DE with homogeneous boundary conditions y(0) = y(1) = 0 is uniquely solvable. In
fact,

0 = y(0) = α+ β,

0 = y(1) = α+ βea/2

is the homogeneous linear system of equations described by the matrix(
1 1
1 ea/2

)
,
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which has determinant ea/2 − 1 6= 0. Hence the homogeneous BVP has only the trivial solution, which
implies assertion (a).

(b) We try an ansatz of the form yp(x) = γeax. This satis�es the inhomogeneous DE if

eax = 2y′′p(x)− ay′p(x) = γ
(
2a2 − a2

)
eax = γa2eax.

This is satis�ed if γ = 1/a2. Hence yp(x) = eax/a2, and therefore the general solution to the inhomo-
geneous DE is

y(x) = α+ βeax/2 +
eax

a2
.

We determine α and β in order to satisfy the boundary conditions:

0 = y(0) = α+ β +
1

a2
,

ea

a2
= y(1) = α+ βea/2 +

ea

a2

has the solutions

α = − ea/2

a2(ea/2 − 1)
, β =

1

a2(ea/2 − 1)
.

Hence the solution to the boundary value problem is

y(x) = − ea/2

a2(ea/2 − 1)
+

1

a2(ea/2 − 1)
eax/2 +

eax

a2
.
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