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1. (4p) Solve the initial value problem vy’ = 2y? + z, y(0) = 1.

Solution: The DE may be rewritten y' = z(y? + 1) and, hence, has separate variables. Note that the
y-dependent factor never gets zero. Dividing by 32 + 1 and integrating yields

1
/7dy:/xdx,
1492

equivalently arctany = x? 4+ C with C € R. Thus y = tan(""/’—z2 + C) is the general solution to the DE.
To satisfy the initial condition we need

which has C' = 7/4 as a solution. Thus the unique solution to the BVP is
; x? LT
=tan|—+ — |.
4 2 "1

2. (6p) Let a € {1,...,12} be the number of your month of birth. (For instance, a = 1 if you are born
in January, a = 7 if you are born in July, or @ = 10 if you are born in October.) For your a, determine
the general solution to the system

' =-z+y,
y' = -z -3y,
Z=—x—(a+3)y+az.

Solution: We sketch a possible solution in dependence of the parameter a. The system is homogeneous
and may be written

x! x -1 1 0
Y| =Aly]|, where A=|-1 -3 0
2 z -1 —(a+3) a

The characteristic polynomial of A is p4(A\) = (A+2)2?(a — \), which leads to the eigenvalues —2 (with
algebraic multiplicity 2) and ¢ with multiplicity one. Computing the corresponding eigenvectors yields
(-1,1,1)T for A= —2 and (0,0,1) " for A = a. In particular, A is not diagonalizable. In order to find
a block-diagonalization, one may solve the linear system of equations (A — (—2))v = (—1,1,1)". If v is
a solution then v together with (—1,1,1)" form a basis of ker(A — (—2))2. The equations to solve read

1 1 0 |-1 1 1 0 |-1
-1 -1 0 |1 ]~1o0 0 0 |0
-1 —(a+3) a+2|1 0 —(a+2) a+2|0

by Gauss elimination. Thus v = (—2,1,1)" is a solution. Set

-1 -2 0
T:=11 1 0],
1 1 1



formed out of the eigenvectors and v as its columns. We compute

-2 1 0
T-'AaT=[0 -2 0] =D,
0 0 a

a block diagonalization. Now we can compute ‘. For the upper block we get

A0S0 ey o) )

—2t 0 0 0 e—2t
Therefore
e”?t tem 0 te=2t 42t te=2t 0
eA=TetPT =T 0 2 0o |T'= —te 2t e 2t — 2t 0],
0 0 eat 7t672t 76at _ t€72t + 672t eat

and we end up with the general solution

x te=2t 4 72t te=2t 0
y | (t)=c —te~2t + ¢y e —te=2t +c3| O
> _te—2t _eat _ te—2t + e—2t eat

with ¢q,c2,c3 € R.

3. (4p) Consider the initial value problem
Yy =2r+y+1, yQ1)=1

Compute a numerical solution at z = 3 by using the (forward) Euler method with step length h = 1/2.
Solution: We have zg = 1,y9 = 1. As h =1/2 we get

x1 =x0+1/2=3/2,

hn =y0+%(2$0+y0+1) =1+4/2=3,
xo=x1+1/2=2,

Y2 =y1 + %(2% +924+1)=3+7/2=13/2,
x3 =5/2,

ys = 13/2 + %(4+ 13/2 + 1) = 49/4,

T4 =3,

1
ys =49/4 + 5(5 +49/4+1) =171/8.
As x4 =3, y4 = 171/8 is the numerical approximation after four Euler steps of length h = 1/2 of y(3).

4. (4p) Show that for each xy € R the initial value problem

3|y| cos =

/

— Iyl cos® =0,
Y ot 22 ) y(wo)

has a unique solution defined on all of R.



_ 3ly|cosz

Solution: Consider the infinite strip [zo—a, zo+a] xR for a € R. The right-hand side f(z,y) = =55
is continuous on the whole strip as its numerator and denominator are continuous functions and the
denominator never gets zero. Moreover, it satisfies a Lipschitz condition w.r.t.  in the strip since

3| cos z| 3
1 (@,91) = f(@,90)l = 57— [ly1] — lyal] < Sl =2l

This guarantees a unique solution defined on the whole interval [z¢ — o, o + «]. As this is true for each
« and the Lipschitz constant is independent of a (we may choose L = %), it follows that the solution
is defined on all of R. (Of course this unique solution is the constant zero function.)

. (6p) Let again a be the number of your month of birth. Determine all equilibrium points of the
autonomous system

% =22 g2,
W — (~1)%a+ 1)z +y— 1,

and investigate whether these equilibrium points are asymptotically stable.

Solution: We again provide a sketch of a solution in dependence of the parameter a. We distinguish
two cases.

a even: Here we have

fz,y) = <(a :i;fz_ 1>, fla,y) = (azf1 _12?/>

The equations for equilibrium points are thus 22 = 3? and (a + 1)z +y — 1 = 0. The first one gives
y = tz. If y = x then from the second equation we get (a + 2)x = 1, i.e. z = 1/(a + 2). On the other
hand, if y = —2 then we obtain = 1/a. Thus we have equilibrium points

1 1 1 1
a+2a+2)’ a al’

Stability: By linearization. The matrix

Farrars) - (0 76)

has eigenvalues

1
_7a2 _ _
R (a+4ﬁ:\/ 7a2 — 24a 16).

The term under the square root gets negative for all natural numbers a and therefore the eigenvalues
are non-real with real part (a+4)/(2(a+2)), which is positive. Hence (1/(a+2),1/(a+2)) is unstable.

For the other point we have
f 1y 2/a  2/a
a’ a a+1 1

1
—(a—|—2:ﬁ:\/9a2—|—4a+4>.

2a

with eigenvalues

Here the eigenvalues are real but at least the one with + is positive. Hence also (1/a, —1/a) is unstable.



a odd: Here we have

flzy) = (_(af;xfy_l), fla,y) = (_(a?in _121/>

The equations for equilibrium points are thus 72 = y? and —(a + 1) + y — 1 = 0. The first one gives
y = . If y = x then from the second equation we get —ax =1, i.e. x = —1/a. On the other hand, if
y = —x then we obtain x = —1/(a + 2). Thus we have equilibrium points

o1 11
a+2a+2)’ a a)’

Stability: By linearization. The matrix

(etaate)- ()

haS EIgenvalueS
2 a + 2 ( )
( )

This is always real and at least the solution with + is positive, thus (=1/(a+2),1/(a+2)) is unstable.

For the other point we have
f/ _1 _l _ _2/a 2/0/
a’ a —(a+1) 1

1
—(a—Zi —7a2—4a—|—4).
2a

with eigenvalues

The term under the square root is negative for each integer a, hence these are non-real eigenvalues
with real part (a — 2)/(2a). This real part is negative if a = 1, otherwise positive. Thus if a = 1 then
(—1/a,—1/a) is asymptotically stable. For all other odd a, (—1/a,—1/a) is unstable.

. (6p) Let again a be the number of your month of birth. Consider the boundary value problem

2y" —ay’ = f(x) on [0, 1], y(0) =co, y(1)=cy. (1)
(a) Prove that for each f € C[0,1] and all ¢, ¢; € R the problem (1) has a unique solution.
(b) Solve the problem (1) for f(z) = e, ¢ = 0 and ¢; = e%/a?.
Solution: Again we show a parameter-dependent solution.

(a) The characteristic polynomial of the homogeneous equation equals p(A) = 2A? — a\ = A(2\ — a)
and has its roots at A = 0 and A = a/2. Thus the general solution of the homogeneous DE equals
y(x) = a + Be*/? with o, B € R. By Theorem 1 on p. 178 in the course book it suffices to show that
the homogeneous DE with homogeneous boundary conditions y(0) = y(1) = 0 is uniquely solvable. In
fact,

0=y(0)=a+p

0=y(1) = a+ Be?

is the homogeneous linear system of equations described by the matrix

1 1
1 ev/?2)”



which has determinant e®/2

implies assertion (a).

— 1 # 0. Hence the homogeneous BVP has only the trivial solution, which

(b) We try an ansatz of the form y,(x) = ~ve®”. This satisfies the inhomogeneous DE if
e =2y (z) — ay(z) = v (20° — a*) e** = ya’e™.
This is satisfied if v = 1/a?. Hence y,(z) = €%*/a?, and therefore the general solution to the inhomo-
geneous DE is
eal

y(z) = o+ fe*/? + o

We determine o and S in order to satisfy the boundary conditions:

1

e e?
Z— (1) = a/2 4 =
. y(1) = a+ Pe +a2

has the solutions
e®/? 1
o= — 5 B = .
a?(e?/2 — 1) a?(e®/? — 1)
Hence the solution to the boundary value problem is
ea/2 el

1
_ ax/2 c
y(x) a2(e®/2 — 1) + a?(ex/? — 1)6 + a2’




