1. (4p) Solve the initial value problem $\frac{\mathrm{d} u}{\mathrm{~d} t}=e^{u} \sin t, u(0)=0$.

Solution: The DE has separate variables and the $u$-dependent factor never gets zero. Dividing by $e^{u}$ and integrating yields

$$
\int e^{-u} \mathrm{~d} u=\int \sin t \mathrm{~d} t
$$

equivalently $e^{-u}=\cos t+C$ with $C \in \mathbb{R}$. Thus $u=-\log (\cos t+C)$ is the general solution to the DE . To satisfy the initial condition we need

$$
0=u(0)=-\log (1+C)
$$

which has $C=0$ as its only solution. Thus the unique solution to the BVP is

$$
u=-\log (\cos t)
$$

The maximal interval around the initial point $t_{0}=0$ where this solution is well-defined is $(-\pi / 2, \pi / 2)$.
2. ( $\mathbf{6 p} \mathbf{p})$ Let $a \in\{1, \ldots, 12\}$ be the number of your month of birth. (For instance, $a=1$ if you are born in January, $a=7$ if you are born in July, or $a=10$ if you are born in October.) For your $a$, determine the general solution to the system

$$
\left\{\begin{array}{l}
x^{\prime}=-(a+2) x+(2 a+2) y \\
y^{\prime}=-(a+1) x+(2 a+1) y \\
z^{\prime}=(2 a+2) x-(2 a+2) y+a z
\end{array}\right.
$$

Solution: We sketch a possible solution in dependence of the parameter $a$. The system is linear and homogeneous and may be written

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \text { where } \quad A=\left(\begin{array}{ccc}
-(a+2) & 2 a+2 & 0 \\
-(a+1) & 2 a+1 & 0 \\
2 a+2 & -(2 a+2) & a
\end{array}\right)
$$

The characteristic polynomial of $A$ is $p_{A}(\lambda)=(a-\lambda)\left(-a \lambda-a+\lambda^{2}+\lambda\right)$, which leads to the eigenvalues $a$ (with algebraic multiplicity 2 ) and -1 with multiplicity one. Computing the corresponding eigenvectors yields $(1,1,0)^{\top}$ and $(0,0,1)^{\top}$ for $\lambda=a$ and $(2,1,-2)^{\top}$ for $\lambda=-1$. In particular, $A$ is diagonalizable. Therefore we may directly write down the general solution to the system. It is given by

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)(t)=c_{1} e^{a t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{2} e^{a t}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+c_{3} e^{-t}\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right)
$$

with $c_{1}, c_{2}, c_{3} \in \mathbb{R}$.
3. (4p) Determine all functions $y: \mathbb{R} \rightarrow \mathbb{R}$ such that $y^{\prime}$ and $x y$ are linearly dependent.

Solution: $y^{\prime}$ and $x y$ being linearly dependent means there exist $a, b$ not both zero simultaneously such that $a y^{\prime}+b x y=0$ for all $x \in \mathbb{R}$. The case $a=0, b \neq 0$ has only the trivial solution $y=0$ identically. Therefore we may divide by $a$ and get the DE

$$
y^{\prime}+c x y=0 .
$$

This is a linear equation of first order and can be solved e.g. by multiplying the DE with the factor

$$
e^{\int c x \mathrm{~d} x}=e^{c \frac{x^{2}}{2}}
$$

This yields the DE

$$
\left(e^{c \frac{x^{2}}{2}} y\right)^{\prime}=0
$$

i.e.

$$
e^{c \frac{x^{2}}{2}} y=C, \quad C \in \mathbb{R}
$$

Hence the general solution is

$$
y(x)=C e^{-c \frac{x^{2}}{2}}, \quad c, C \in \mathbb{R}
$$

This is the whole class of functions such that $y$ and $x y$ are linearly dependent.
4. (5p) Use the Laplace transform to solve the initial value problem

$$
u^{\prime \prime}+4 u^{\prime}+3 u=12, \quad u(0)=7, \quad u^{\prime}(0)=1 .
$$

Solution: Denoting by $U$ the Laplace transform of $u$ we get

$$
s^{2} U(s)-s u(0)-u^{\prime}(0)+4 s U(s)-4 u(0)+3 U(s)=\frac{12}{s}
$$

After simplifying and plugging in the initial values we get the equation

$$
s\left(s^{2}+4 s+3\right) U(s)-7 s(s+4)-s=12
$$

Its solution is

$$
U(s)=\frac{7 s^{2}+29 s+12}{s\left(s^{2}+4 s+3\right)}=\frac{a}{s(s+3)(s+1)}
$$

It remains to transform backwards. We use partial fractions to obtain

$$
U(s)=\frac{5}{s+1}-\frac{2}{s+3}+\frac{4}{s} .
$$

Hence

$$
u(t)=5 e^{-t}-2 e^{-3 t}+4
$$

5. ( $\mathbf{6 p}$ ) Let again $a$ be the number of your month of birth. Rewrite the differential equation

$$
x^{\prime \prime}+a x^{\prime}-x^{2}+1=0
$$

as a first-order system and compute all its equilibrium points. Moreover, for each equilibrium point, investigate whether it is unstable/stable/asymptotically stable.
Solution: We again provide a sketch of a solution in dependence of the parameter $a$. To rewrite the equation as a system, let $y_{1}=x$ and $y_{2}=x^{\prime}$. Then

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2}, \\
& y_{2}^{\prime}=y_{1}^{2}-a y_{2}-1 .
\end{aligned}
$$

Determining equilibrium points, the first equation gives $y_{2}=0$ and then the second one implies $y_{1}^{2}=1$. Hence the system has two equilibrium points, $(-1,0)$ and $(1,0)$. We study stability via linearization.
Denoting the right-hand side of the system

$$
F\left(y_{1}, y_{2}\right)=\binom{y_{2}}{y_{1}^{2}-a y_{2}-1}
$$

we get the Jacobi matrix

$$
F^{\prime}\left(y_{1}, y_{2}\right)=\left(\begin{array}{cc}
0 & 1 \\
2 y_{1} & -a
\end{array}\right) .
$$

The matrix

$$
F^{\prime}(-1,0)=\left(\begin{array}{cc}
0 & 1 \\
-2 & -a
\end{array}\right)
$$

has characteristic polynomial $\lambda^{2}+a \lambda+2$ and, thus eigenvalues

$$
\lambda=-\frac{a}{2} \pm \sqrt{\frac{a^{2}-8}{4}}=\frac{1}{2}\left(-a \pm \sqrt{a^{2}-8}\right) .
$$

For $a=1,2$ the expression under the square root is negative and therefore the real part of each eigenvalue is $-a / 2<0$. For all other $a$ both eigenvalues are real and negative, as $\sqrt{a^{2}-8}<a$. Therefore the critical point $(-1,0)$ is asymptotically stable.
For the second equilibrium point we have

$$
F^{\prime}(1,0)=\left(\begin{array}{cc}
0 & 1 \\
2 & -a
\end{array}\right)
$$

and the characteristic polynomial is $\lambda(a+\lambda)-2=\lambda^{2}+a \lambda-2$. The eigenvalues are therefore

$$
\lambda=\frac{1}{2}\left(-a \pm \sqrt{a^{2}+8}\right) .
$$

They are real and the larger one is always positive as $\sqrt{a^{2}+8}>a$. Hence the equilibrium point $(1,0)$ is unstable.
6. (5p) Determine the general solution to the differential equation

$$
y^{\prime \prime}-y=x e^{x}
$$

Solution: The equation is linear and the corresponding homogeneous equation is $y^{\prime \prime}-y=0$ with characteristic polynomial $\lambda^{2}-1$. This leads to $\lambda= \pm 1$. Thus the general solution to the homogeneous equation is

$$
y_{\mathrm{hom}}(x)=C_{1} e^{x}+C_{2} e^{-x}, \quad C_{1}, C_{2} \in \mathbb{R}
$$

To solve the inhomogeneous equation we use an ansatz $y_{\mathrm{p}}(x)=x(A x+B) e^{x}$ - the factor $x$ is due to resonance! Plugging this into the DE and collecting terms yields

$$
(2 B+2 A+4 A x) e^{x}=x e^{x} .
$$

Comparing coefficients leads to $2 B+2 A=0$ and $4 A=1$ and, thus, $A=1 / 4, B=-1 / 4$. We obtain

$$
y_{\mathrm{p}}(x)=x\left(-\frac{1}{4}+\frac{1}{4} x\right) e^{x}=\frac{1}{4} x(x-1) e^{x} .
$$

Therefore the general solution to the inhomogeneous DE is

$$
y(x)=C_{1} e^{x}+C_{2} e^{-x}+\frac{1}{4} x(x-1) e^{x}, \quad C_{1}, C_{2} \in \mathbb{R}
$$

