Algebraic Topology, Homework Assignment 12 Due Thursday April 28, 2022

(1) (5 points)

Let $p: Y \to X$ be a covering space and $K \subset X$ a compact subset. Show:

- (a) For every section $s \colon K \to Y$ (i.e. continuous function such that $p \circ s = \mathrm{id}_K$), there exists an open set $U \supset K$ and an extension of s to U.
- (b) Let $U \supset K$ be open and $s, s' \colon U \to Y$ be two sections that agree on K. Then there is a possibly smaller open set V, $U \supset V \supset K$, such that $s|_V = s'|_V$.
- (2) (5 points)

Let M, N be connected, compact, oriented manifolds of the same dimension n. Then the mapping degree $\deg(f)$ of a map $f: M \to N$ is defined to be the integer k such that the homomorphism

$$\mathbf{Z} \xrightarrow{o_M^{-1}} H_n(M) \xrightarrow{f_*} H_n(N) \xrightarrow{o_N} \mathbf{Z}$$

is multiplication by k. Here the isomorphisms o_M and o_N are determined by the orientations.

Show: a map of nonzero mapping degree is surjective.