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Problem 1. Let f(x, y) = (x− y)(x2 + y2 − 1). Which of the following four figures shows
the level curves of f?
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Solution. There are many ways to solve this question. Since f is factored, let us examine the
factors. The first factor, (x− y) is 0 whenever x = y, so on the line x = y, the function has
value 0. Hence, the line y = x is a level curve for f . The only figure with y = x as level curve
is the second figure. To really verify the solution, we also note that the curve x2 + y2 = 1 is
(with the same motivation) a level curve of f , so the unit circle is also a level curve of f . The
second figure includes the unit circle as level curve.
Alternatively, we can compute the gradient of f at (x, y) = (0, 0). With some work, one can
compute that (∇f)(0, 0) = (−1, 1), so the gradient vector is pointing in this direction. This
is the same as 135◦. Now, the gradient is perpendicular to the level curve, so the level curve
for f must have slope 45◦ in the origin. Only the second picture has this property.

Problem 2. Let f(x, y) = x2 − 2xy + 2y3 − x− 3y.

a) Compute the gradient of f in the point (2, 3).

b) Compute the Hessian matrix for f .

c) Find the global minimum for f on the region 1 ≤ x ≤ 20, 1 ≤ y ≤ 20. Hint: prove that f
is convex on this region1.

Solution. a) We compute the partial derivatives, and get f ′x = 2x−2y−1 and f ′y = −2x+6y2−3.
Thus, the gradient is ∇f = (2x− 2y − 1,−2x+ 6y2 − 3). In the point (x, y) = (2, 3), this
has value (−3, 47).
b) Moving on to the second order derivatives, we get f ′′xx = 2, f ′′yy = 12y, f ′′xy = −2. Thus,

the Hessian matrix is
(

2 −2
−2 12y

)
.

1The original problem said 0 ≤ x, y ≤ 20, and the function is not convex in this larger region. To find
minimum for that problem, more work is needed.



c) We first look for all critical points in the region. A point (x, y) is critical if it makes the
gradient (0, 0), so we must solve 2x− 2y − 1 = 0

−2x+ 6y2 − 3 = 0.

From the first equation, we see that 2x = 1 + 2y. Substituting into the second gives
−(1 + 2y) + 6y2 − 3 = 0. This leads to 6y2 − 2y − 4 = 0 which has the solutions y = 1 and
y = −2

3 . The relation 2x = 1 + 2y allows us to compute the corresponding values for x. We
get that (3

2 , 1) and (−1
6 ,−

2
3) are critical points for f , but only the first point lies in the region.

If we can prove that f is convex, we know that (3
2 , 1) is where the minimum is attained. In

order for f to be convex, we need to verify the three conditions

f ′′xx ≥ 0, f ′′yy ≥ 0 and f ′′xxf
′′
yy − (f ′′xy)2 ≥ 0.

In our situation, this leads to

2 ≥ 0, 12y ≥ 0 and 2 · 12y − (−2)2 ≥ 0,

which is true in our region, since y ≥ 1 there. Hence, the function is convex, so f(3
2 , 1) =

−13
4 = −3.25 is the minimum.

Problem 3. An unknown function f(x, y, z) has the partial derivatives
∂f

∂x
= 2x(x+ 1)e2x+3y−z ∂f

∂y
= 3x2e2x+3y−z ∂f

∂z
= −x2e2x+3y−z.

We let g(s, t) = f (2s+ 7t, 3s− 8t, 13s− 10t). Compute the partial derivative ∂g
∂t
.

Solution. The multivariate chain rule states that
∂g

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
.

We have x(s, t) = 2s+ 7t, y(s, t) = 3s− 8t and z(s, t) = 13s− 10t, so
∂x

∂t
= 7, ∂y

∂t
= −8, ∂z

∂t
= −10.

Hence,
∂g

∂t
= 2x(x+ 1)e2x+3y−z · 7 + 3x2e2x+3y−z · (−8) + (−x2)e2x+3y−z · (−10)

= e2x+3y−z
(
14x(x+ 1)− 24x2 + 10x2

)
= e2x+3y−z · 14x

We now want to express the x, y, z in s, t. First, note that e2x+3y−z becomes

e2(2s+7t)+3(3s−8t)−(13s−10t) = e4s+14t+9s−24t=13s−10t = e0 = 1,

so all in all ∂g
∂t

= e0 · 14(2s+ 7t) = 28s+ 98t.



Problem 4. Let f(x, y) = 3x + 4y. Find the maximum of f subject to the constraints
(x− 1)2 + y2 ≤ 25.

Solution. The constraint (x− 1)2 + y2 ≤ 25 gives a region in the plane (it is a disk centered
in (1, 0) with radius 5). The maximum is either attained inside the disk, or on the boundary.
The partial derivatives are f ′x = 3, f ′y = 4, so f has no critical points. Hence, the maximum
must be on the boundary on the region, which is given by the condition (x−1)2 +y2−25 = 0.
We introduce the Lagrangian,

L(x, y, λ) = 3x+ 4y − λ((x− 1)2 + y2 − 25).

We differentiate, and get

L′1(x, y) = 3− 2λ(x− 1) L′2(x, y) = 4− 2λy.

We must now solve the system 
3− 2λ(x− 1) = 0
4− 2λy = 0
(x− 1)2 + y2 − 25 = 0.

The first equation gives x− 1 = 3
2λ , the second gives y = 2/λ. Substituting this into the third

equation gives( 3
2λ

)2
+
(2
λ

)2
− 25 = 0 ⇐⇒ 9

4λ2 + 4
λ2 = 25 ⇐⇒ 9

4 + 16
4 = 25λ2 ⇐⇒ 25

4 = 25λ2.

This leads to λ = ±1
2 . We can then solve for x and y:

(λ, x, y) = (1/2, 4, 4) (λ, x, y) = (−1/2,−2,−4).

Thus, the maximum must be among the values f(4, 4) = 28 and f(−2,−4) = −22, so the
maximum of f on the disk is therefore 28.

Problem 5. Let A and B be the matrices

A =
(

1 2
5 3

)
, B =

1 0 6
1 2 −t
1 1 t

 .
a) Compute |A| and |B|.

b) For what values of t is the matrix B invertible?

c) Give an argument why there is no 2×2-matrix X (with real numbers), with the property
that X2 = A.



Solution. a) The formula for 2× 2-determinats gives |A| = 1 · 3− 5 · 2 = −7. Sarrus’s rule for
3× 3-determinants gives

|B| = 2t+ 0 + 6− (−t)− 0− 12 = 3t− 6.

b) The matrix is invertible exactly when its determinant is non-zero, so we need t 6= 2.
c) Suppose X2 = A. Then |X|2 = |A| by rules of determinants. But then, we must have that
|X|2 = −7. There is no real number whose square is −7, so there cannot be such a matrix X.

Problem 6. Solve the system of equations
x + 6z = 1
x+ 2y − tz = 2
x+ y + tz = 3,

under the assumption that t 6= 2.

Solution. We first write the system in matrix form: 1 0 6 1
1 2 −t 2
1 1 t 3

 .
We now perform Gaussian elimination, the first row is used to eliminate the other two 1s in
the first column. We get (with more steps of Gaussian elimination), 1 0 6 1

0 2 −t− 6 1
0 1 t− 6 2

 →

 1 0 6 1
0 1 t− 6 2
0 2 −t− 6 1

 →

 1 0 6 1
0 1 t− 6 2
0 0 −3t+ 6 −3

 (1)

From here, since t 6= 2, we can divide the last row by −3t+ 6, and we get 1 0 6 1
0 1 t− 6 2
0 0 1 1

t−2

 →

 1 0 0 1− 6
t−2

0 1 0 2− t−6
t−2

0 0 1 1
t−2

 .
Hence, under the condition t 6= 2, the solution is

x = 1− 6
t− 2 = t− 8

t− 2 , y = 2− t− 6
t− 2 = t+ 2

t− 2 , z = 1
t− 2 .

In the case t = 2, then the last line in the last matrix in (1) states 0 = −3, which means that
the system does not have any solutions in this situation.


