
Solutions to the 2022-03-18 exam

Question 1

a) The binary expansion of 41 is 20 + 23 + 25. By successively squaring the number
3 modulo 7, we find the following table.

n 0 1 2 3 4 5
32n

3 2 4 2 4 2

Hence 341 = 320 · 323 · 325 ≡ 3 · 2 · 2 ≡ 5 (mod 7).

b) Using that 2−1 ≡ 3 (mod 5), the system
2x ≡ 1 (mod 5),
x ≡ 2 (mod 8),
x − 1 ≡ 4 (mod 7),

can be rewritten as 
x ≡ 3 (mod 5),
x ≡ 2 (mod 8),
x ≡ 5 (mod 7).

Writing x = 3 + 5k, where k ∈ Z, we obtain that

3 + 5k ≡ 2 (mod 8).

Since 5 · 5 = 25 ≡ 1 (mod 8), we see that k ≡ 3 (mod 8). Writing k = 3 + 8l for
some l ∈ Z, we see that

x = 3 + 5(3 + 8l) ≡ 4 + 5l ≡ 5 (mod 7).

Since 5−1 ≡ 3 (mod 7), it follows that l ≡ 3 (mod 7). In particular, we find that

x = 3+ 5(3+ 8(3+ 7m)) = 3+ 15+ 40(3+ 7m) = 18+ 120+ 280m = 138+ 280m

is a solution to the system of congruences above. Moreover, since the moduli 5, 8
and 7 are pairwise relative prime, by the Chinese remainder theorem all solutions
must be of the form x = 138 + 280m.

c) An element x ∈ Z/20 is a unit if and only if gcd(x, 20) = 1. Since 20 = 22 · 5, this
amounts to not being divisible by 2 or 5. In particular, the units of Z/20 are (the
classes represented by) 1, 3, 7, 9, 11, 13, 17 and 19.

1



Question 2

a) Björn obtained c by computing me modulo N, where m is Björn’s plaintext.

If Agnetha has not done so yet, she needs to compute her private decryption key
d, which is the multiplicative inverse of e modulo (p− 1)(q− 1). This can be done
using the extended Euclidean algorithm. She then recovers Björn’s plaintext by
computing cd ≡ m (mod N).

The reason that this calculation works is that, when gcd(e, (p − 1)(q − 1)) = 1, a
congruence of the form xe ≡ y (mod N) always has a unique solution in x given
by yd, where d is a multiplicative inverse of e modulo (p − 1)(q − 1).

b) Since (x + p)(x + q) = x2 + (p + q)x + pq, one can compute p and q if one knows
the values p + q and N = pq by finding the roots of this polynomial. Since
(p − 1)(q − 1) = pq − p − q + 1, anyone who knows all the public information
and the value of (p − 1)(q − 1) can determine the value of p + q and hence of p
and q.

c) Suppose Anni-Frid’s RSA keys consist of a modulus NA, a public encryption
exponent eA, and a private decryption exponent dA. Elton first intercepts Anni-
Frid’s public keys NA and eA and prevents Benny from obtaining them. Next,
Elton creates his own set of RSA keys NE, eE, and dE, and sends NE and eE to
Benny, who believes they came from Anni-Frid.

Suppose now that Benny wants to send a plaintext m to Anni-Frid. He computes
the ciphertext c = meE , thinking Anni-Frid and only her possesses the correct
decryption exponent, and sends c to Anni-Frid. Now Elton intercepts c and com-
putes m = cdE . Elton can now read Benny’s message, may choose to alter it to
another message m′, encrypts it to c′ = m′eA using Anni-Frid’s public key, and
sends c′ to her. Now Anni-Frid finds the plaintext m′ = c′dA using her secret key,
thinking the message came from Benny and not knowing Elton was able to read
and potentially tamper with it.

Question 3

a) The Miller-Rabin primality test is described in Table 3.2 of [HPS14]:

2



b) We first need to check whether n is even and compute gcd(a, n), which can both
be done in polynomial time. Writing n − 1 as 2kq with q odd can be done by
repeatedly dividing n − 1 by 2, which is also polynomial in the number of digits
of n since every division reduced the number of digits of n − 1 by one. One then
needs to compute aq modulo n, which can also be done in polynomial time using
fast-powering. One then needs to square this number aq at most k times. Since
k can’t be greater than the number of digits of n, this can also be performed in
polynomial time. We conclude that the complexity Miller-Rabin test is polynomial
in the number of digits of n.

c) For a random composite number n, at least 75% of the numbers smaller than n are
Miller-Rabin witnesses. One might now be inclined to think that the probability
that n is prime if the Miller-Rabin test fails a times is at least 1 − 4−a. This would
yield p/100 ≤ 1 − 4−a and hence that −a ≤ log4(1 − p/100), so Alice would
need to check a ≥ log4(1 − p/100) values she wants to be at least p% sure that
the integer n is prime.

However, this is not entirely correct: the probability that a randomly chosen num-
ber is prime should also be taken into account. The probability that a randomly
chosen number n is prime is roughly 1/ log(n) by the prime number theorem. By
Bayes’s formula, we find that

Pr(n is prime | test fails a times)

is equal to

P(n is prime)
Pr(n is prime) + Pr(test fails a times | n is composite)Pr(n is composite)

.

Using that Pr(test fails a times | n is composite) ≤ 4−a, we find that

Pr(n is prime | test fails a times)

3



must be greater than or equal to

1/ log(n)
1/ log(n) + 4−a · (1 − 1/ log(n))

=
1

1 + (log(n)− 1) · 4−a

This yields the inequality

p
100

≤ 1
1 + (log(n)− 1) · 4−a ,

hence

4a ≥ p(log(n)− 1)
100 − p

In particular, to be p% sure, Alice needs to test

a ≥ log4

(
p(log(n)− 1)

100 − p

)
values.

d) In the Miller-Rabin test, for each composite number at least 75 % of the natural
numbers smaller than it are witnesses, while in the Fermat primality test, there
exist composite numbers that have no witness. However, the Fermat primality test
is faster, so it could be useful to first run the Fermat primality test before running
the Miller-Rabin primality test when determining whether a given number is
prime.

Question 4

a) Shank’s baby-step giant-step algorithm is described in Proposition 2.21 of [HPS14]:

4



b) Suppose the discrete logarithm problem gx = h in given group G has a solution
and let n = 1+ ⌊

√
N⌋, where N = ordG(g). The fact that a solution exists implies

that gx = h for some 0 ≤ x < N. Using division with remainder, we can write
x = an+ b with 0 ≤ b < n. Since x < N < n2, we moreover see that a < n as well.
This means that gb = hg−an. Since gb is in the first list and hg−an in the second
list, one is guaranteed to find a solution.

c) This is essentially the first version of the Pohlig-Hellman algorithm (see Theorem
2.31 of [HPS14]).

Since g is a primitive root Fp, we see that gx = h has a unique solution x in
Z/(p − 1). By the Chinese Remainder Theorem, we only need to determine the
values of x modulo the three primes q1, q2 and q3 separately. Moreover, note that
the element gq2q3 has order q1 and that

(gq2q3)x = hq2q3 ,

so if y1 is any solution to
(gq2q3)y1 = hq2q3 ,

then x ≡ y1 (mod q1). Similarly, if y2 and y3 are solutions to

(gq1q3)y2 = hq1q3 and (gq1q2)y3 = hq1q2 ,

then x ≡ y2 (mod q2) and x ≡ y3 (mod q3), hence the Chinese Remainder The-
orem can be used to determine the value of x if one knows such solutions y1,
y2 and y3. In particular, solving the original discrete logarithm problem can be
reduced to solving three discrete logarithm problems for elements of order q1, q2
and q3, respectively, which is generally much easier.

d) Shank’s algorithm requires a lot of storage (namely O(
√

N), where N is the order
of g), making it unusable if g has a large order. On the other hand, Pollard’s ρ

method does not require much storage since one does not have to store the lists.

Question 5

a) The ElGamal public key cryptosystem is described in Table 2.3 of [HPS14]:

5



b) Let us say Samantha and Victor are using a digital signature scheme. Given
a document D, the purpose of a digital signature scheme is to be able to ensure
Victor that Samantha approves of this document. This is done by letting Samantha
create an extra piece of information Dsign based on this document D, such that
there is an easy way of verifying that Dsign is a “digital signature” of D using a
public key that Samantha published, while it is very hard to create (or “forge”)
such a digital signature Dsign without knowing Samantha’s private key.

c) The following is roughly the definition of a Hash function given at the start of
section 8.1 of [HPS14]:

A hash function is a function Hash that takes arbitrarily large document D as
input and that returns a short string of bits H = Hash(D). It should satisfy the
following properties

(i) Computing Hash(D) should be fast and easy (i.e. linear time).

(ii) Given a possible hash value H, it should be difficult to find a document D
such that Hash(D) = H (i.e. exponential time).

(iii) It should be hard to find two different document D1 and D2 such that
Hash(D1) = Hash(D2).

6



Question 6

a) If B is very small, then it is harder to find numbers a such that a2 − N is B-smooth.
One the other hand, if B is very large, then one will need to find a lot of B-smooth
numbers in order to perform the elimination step.

b) Note that N = 1569929 ≡ 9 ≡ 4 (mod 5). In particular, a number of the form
T2 − N is divisible by 5 if and only if T2 ≡ 4 (mod 5). The solutions to this con-
gruence are T ≡ 2, 3 (mod 5), so a number of the form F(T) is divisible by 5 if
and only if T ≡ 2, 3 (mod 5). These are the numbers F(2492), F(2493, F(2497), F(2498), . . ..

c) The following matrix equation in F2 can be used to find solutions to the equation
x2 ≡ y2 (mod N): 

0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 1
0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0





x1
x2
x3
x4
x5
x6
x7
x8


=



0
0
0
0
0
0
0
0


Question 7

a) y2 = x3 + 1 defines an elliptic curve over F7 since 4 · 03 + 27 · 12 = 273 ̸≡ 0
(mod 7).

b) We see that 03 + 1 ≡ 1 (mod 7) and 63 + 1 ≡ (−1)3 + 1 ≡ 0 (mod 7), so P and Q
are points on E. The points 3P = 2P + P, 2Q and P + Q can be computed using
Theorem 6.6 of [HPS14]. This yields 3P = O, 2Q = O and P + Q = (2, 4).

Note. The computations should be included in your solution.

c) We see that

02 ≡ 0 (mod 7)

12, 62 ≡ 1 (mod 7)

22, 52 ≡ 4 (mod 7)

32, 42 ≡ 2 (mod 7)

By filling in all possible values x ∈ F7 in x3 + 1, we find the points

(0, 1), (0, 6), (1, 3), (1, 4), (2, 3), (2, 4), (3, 0), (4, 3), (4, 4), (5, 0), (6, 0)

Including the point O at infinity, we see that E has 12 points over F7.

7



d) Note that a point P = (x, y) on an elliptic curve has order 2 if and only if y = 0.
In particular, the group E(F7) has three points of order 2, which is not possible
in a cyclic group.

Question 8

a) The Hasse bound states that the absolute value of p + 1 − #E(Fp) is smaller than
or equal to 2

√
p.

b) There is no obvious way to encode messages as points on elliptic curves.

c) The Diffie-Hellman key exchange is described in Table 6.5 of [HPS14]:

The algorithms involved in making the actual key exchange are the Elliptic Curve
Addition Algorithm and the Double-and-Add Algorithm (also called the Fast
Powering Algorithm). These are both polynomial in the size of the input.

d) Let a composite number N be given. In Lenstra’s factorization algorithm, one
chooses an “elliptic curve E modulo N”, or more precisely, an equation of the
form y2 = x3 + Ax + B, together with a point (a, b) on E modulo N. One then
computes the multiples 2!P, 3!P, 4!P, . . . up to a specific bound using the Elliptic
Curve Addition Algorithm and the Double-and-Add Algorithm. Since N is not a
prime number, the Elliptic Curve Addition Algorithm might fail since one might
need to invert a number module N which is not relatively prime to N. However,
in this case one finds a nontrivial factor of N by computing the greatest com-
mon divisor of N and this number. If this does not happen while computing

8



2!P, 3!P, . . ., then one chooses a new elliptic curve with a new point and repeats
the same procedure.

Lenstra’s factorization algorithm works well if there exists a prime factor p of N
such that #E(Fp) is a product of small primes, whereas Pollard’s p − 1 algorithm
works well if #F×

p is a product of small primes for some prime factor p of N. This
means that Pollard’s p − 1 algorithm will be very slow if such a prime factor of
N does not exist. However, if in the case of Lenstra’s algorithm there exists no
prime factor p of N such that #E(Fp) is a product of small prime numbers, then
one can simply run the algorithm again with a new “elliptic curve modulo N”
which is likely to have a different number of points.

References

[HPS14] J. Hoffstein, J. Pipher, and J. H. Silverman. An introduction to mathematical
cryptography. Second. Undergraduate Texts in Mathematics. Springer, New
York, 2014, pp. xviii+538. isbn: 978-1-4939-1710-5.

9


