Exam: Introduction to Finance Mathematics (MT5009), 2022-05-24

Examiner: Kristoffer Lindensjö; kristoffer.lindensjo@math.su.se
Allowed aid: Calculator (provided by the department).
Return of exam: To be announced via the course webpage or the course forum.
The exam consists of five problems. Each problem gives a maximum of 10 points.

- The reasoning should be clear and concise.
- Answers should be motivated (unless otherwise stated).
- Any assumptions should be clearly stated and motivated.
- Start every problem on a new sheet of paper.
- Clearly number each sheet with problem number and sheet order.
- Write your code number (but no name) on each sheet.

Preliminary grading:
A \quad B \quad C \quad D \quad E
$\begin{array}{lllll}46 & 41 & 36 & 30 & 25\end{array}$

Good luck!

Problem 1

(A) Find the value of a bond with face value $F=100$, coupons $C=10$ which are paid every six months, and maturity in 1.5 years. The interest rate (which is constant and continuously compounded) is 3%.
(B) Find the value of a bond with no face value $(F=0)$, annual coupons $C=100$, and maturity in 30 years. The interest rate (which is constant and compounded yearly) is 5%.

Problem 2

Suppose we have a one-period binomial model. The risk-free interest rate (oneperiod return on the risk-free asset) is R. The current share price is $S(0)$ and the share price at time 1 will be either $S^{u}=S(0)(1+U)$ or $S^{d}=S(0)(1+D)$. Suppose we have a derivative with maturity at time 1 and payoff function

$$
f(s)=\sqrt{s}
$$

and that

$$
R=0.05, \quad U=0.1, \quad D=-0.1, \quad S(0)=1 .
$$

(A) Calculate the value of the derivative in case it is European.
(B) Calculate the value of the derivative in case it is American.

Problem 3

Consider the following three bonds:

- a one-year zero-coupon bond with face value 100 SEK, trading at 93 SEK,
- a two-year coupon bond with annual coupons of 10 SEK and face value 100 SEK, trading at 103 SEK,
- a three-year coupon bond with annual coupons of 7 SEK and face value 100 SEK, trading at 99 SEK.
(A) Derive the spot rates.
(B) If the term structure is deterministic, what is the price at time $t=1$ of a zero-coupon unit-bond maturing at time $T=3$?

Problem 4

Consider a market consisting of three stocks, with expected returns $0.22,0.17$ and 0.07 , and variances of returns $0.03,0.02$ and 0.01 respectively. The covariance between the returns of the first and second stock is 0.01 . The return of the
third stock is uncorrelated to the first and second stock. The risk-free return is 0.02 .
(A) Calculate the weights of the portfolio consisting of the two stocks that has the smallest variance.
Hint: you may use the following

$$
\mathbf{w}_{\mathrm{MVP}}=\frac{\mathbf{u C}^{-1}}{\mathbf{u C}^{-1} \mathbf{u}^{\top}}
$$

where \mathbf{u} is a vector of ones, and \mathbf{C} is the covariance matrix of the returns of the stocks, and

$$
\mathbf{C}^{-1}=\left(\begin{array}{ccc}
40 & -20 & 0 \tag{2p}\\
-20 & 60 & 0 \\
0 & 0 & 100
\end{array}\right)
$$

(B) What is the variance of the portfolio in (B)?
(C) Calculate the weights of the market portfolio.

Hint: you may use the following

$$
\mathbf{w}_{M}=\frac{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1}}{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1} \mathbf{u}^{\top}}
$$

where \mathbf{m} is the mean vector of the returns of the stocks, and R is the risk-free return.
(D) Does the portfolio with weights $\mathbf{w}_{V}=(0.25,0.30,0.45)$ lie on the efficient frontier?
Hint: You may use the following: Each portfolio on the minimum variance line can be obtained as a linear combination of any two portfolios on the minimum variance line with different expected returns.

Problem 5

Consider a European put and an American put on the same underlying share with price process $S(t)$, with the same strike X and the same maturity date T. Suppose there are no dividends etc. The interest rate is constant $r>0$. The current time is $t=0$. Let $P_{A}(0)$ be the value of the American put and $P_{E}(0)$ be the value of the European put. Show using the no-arbitrage principle that

$$
\begin{equation*}
P_{E}(0) \leq P_{A}(0) \tag{10p}
\end{equation*}
$$

Hint: use the usual proof by contradiction approach.

