Suggested solutions

Exam: Introduction to Finance Mathematics (MT5009), 2022-05-24

Problem 1

Relying on Capinski \& Zastawniak Chapter 1 we find the following values.
(A)

$$
10 \cdot e^{-0.03 \cdot \frac{1}{2}}+10 \cdot e^{-0.03 \cdot \frac{2}{2}}+(10+100) \cdot e^{-0.03 \cdot \frac{3}{2}} \approx 124.7153
$$

(B) With $C=100, n=30$ and $r=0.05$,

$$
C \frac{1-(1+r)^{-n}}{r} \approx 1537.2451
$$

Problem 2

(A) The value of the European version of the derivative is

$$
\begin{aligned}
H_{E}(0) & =\frac{1}{(1+R)}\left[p_{*} f\left(S^{u}\right)+\left(1-p_{*}\right) f\left(S^{d}\right)\right] \\
& =\frac{1}{(1+R)}\left[\frac{R-D}{U-D} \sqrt{S^{u}}+\left(1-\frac{R-D}{U-D}\right) \sqrt{S^{d}}\right] \\
& =0.975
\end{aligned}
$$

(B) The value of the American version of the derivative is

$$
\begin{aligned}
H_{A}(0) & =\max \left\{f(S(0)) ; H_{E}(0)\right\} \\
& =\max \{\sqrt{S(0)} ; 0.975\} \\
& =1
\end{aligned}
$$

Problem 3

(A) The spot rates are the yields $y(0, N)$ dictated by the current prices (see Capinski \& Zastawniak, pp. 247-248). We get the following equations for the yields

$$
\begin{aligned}
93 & =100 e^{-y(0,1)} \\
103 & =10 e^{-y(0,1)}+110 e^{-2 y(0,2)} \\
99 & =7 e^{-y(0,1)}+7 e^{-2 y(0,2)}+107 e^{-3 y(0,3)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& y(0,1)=-\ln (93 / 100) \approx 7.26 \% \\
& y(0,2)=-\frac{1}{2} \ln \left(\frac{103-10 e^{-y(0,1)}}{110}\right) \approx 8.02 \%, \\
& y(0,3)=-\frac{1}{3} \ln \left(\frac{99-7 e^{-y(0,1)}-7 e^{-2 y(0,2)}}{107}\right) \approx 7.08 \% .
\end{aligned}
$$

(B) The no-arbitrage principle implies that

$$
B(0,3)=B(0,1) B(1,3),
$$

where $B(t, T)$ is the price at time t of a zero-coupon unit-bond maturing at time T (see Capinski \& Zastawniak, p. 249). Hence

$$
B(1,3)=\frac{B(0,3)}{B(0,1)}=\frac{e^{-3 y(0,3)}}{e^{-y(0,1)}} \approx 0.870 \mathrm{SEK} .
$$

Problem 4

(A) We have

$$
\mathbf{u C}^{-1}=(20, \quad 40, \quad 100)
$$

and

$$
\mathbf{u} \mathbf{C}^{-1} \mathbf{u}^{\top}=160
$$

hence

$$
\mathbf{w}_{\mathrm{MVP}}=\frac{\mathbf{u C}^{-1}}{\mathbf{u} \mathbf{C}^{-1} \mathbf{u}^{\top}}=\left(\frac{1}{8}, \frac{2}{8}, \frac{5}{8}\right) .
$$

(B) The variance of the minimum variance portfolio is given by

$$
\sigma_{\mathrm{MVP}}^{2}=\mathbf{w}_{\mathrm{MVP}} \mathbf{C} \mathbf{w}_{\mathrm{MVP}}^{\top} .
$$

The covariance matrix is

$$
\mathbf{C}=\left(\begin{array}{ccc}
0.03 & 0.01 & 0 \\
0.01 & 0.02 & 0 \\
0 & 0 & 0.01
\end{array}\right)
$$

Hence

$$
\sigma_{\mathrm{MVP}}^{2}=0.00625 .
$$

(C) We have

$$
\mathbf{m}-R \mathbf{u}=\left(\begin{array}{lll}
0.20, & 0.15, & 0.05
\end{array}\right)
$$

hence

$$
(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1}=(5, \quad 5, \quad 5)
$$

and

$$
(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1} \mathbf{u}^{\top}=15
$$

hence

$$
\mathbf{w}_{M}=\frac{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1}}{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1} \mathbf{u}^{\top}}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

(D) Each portfolio on the minimum variance line can be obtained as a linear combination of any two portfolios on the minimum variance line with different expected returns ((see Capinski \& Zastawniak, p. 77). We know that the minimum variance portfolio and the market portfolio lie on the minimum variance line, and their expected returns are

$$
\begin{aligned}
\mu_{\mathrm{MVP}} & =\mathbf{w}_{\mathrm{MVP}} \mathbf{m}^{\top}=0.11375, \\
\mu_{M} & =\mathbf{w}_{M} \mathbf{m}^{\top}=0.1533 \ldots,
\end{aligned}
$$

hence $\mu_{\text {MVP }} \neq \mu_{M}$ and each portfolio on the minimum variance line can be obtained from

$$
\begin{equation*}
\mathbf{w}_{V}=\alpha \mathbf{w}_{\mathrm{MVP}}+(1-\alpha) \mathbf{w}_{M} \tag{1}
\end{equation*}
$$

for some $\alpha \in \mathbb{R}$. Hence if we can find some $\alpha \in \mathbb{R}$ such that this is satisfied for the portfolio with weights $\mathbf{w}_{V}=(0.25,0.3,0.45)$, then this portfolio lies on the minimum variance line. From (1) we see that we need to find α such that

$$
\begin{aligned}
& \alpha=\frac{w_{V, 1}-w_{M, 1}}{w_{\mathrm{MVP}, 1}-w_{M, 1}}, \\
& \alpha=\frac{w_{V, 2}-w_{M, 2}}{w_{\mathrm{MVP}, 2}-w_{M, 2}}, \\
& \alpha=\frac{w_{V, 3}-w_{M, 3}}{w_{\mathrm{MVP}, 3}-w_{M, 3}}
\end{aligned}
$$

Using $\mathbf{w}_{V}=(0.25,0.3,0.45)$ and $\mathbf{w}_{\mathrm{MVP}}$ from (A) and \mathbf{w}_{M} from (c), we obtain

$$
\begin{gathered}
\frac{w_{V, 1}-w_{M, 1}}{w_{\mathrm{MVP}, 1}-w_{M, 1}}=0.4, \\
\frac{w_{V, 2}-w_{M, 2}}{w_{\mathrm{MVP}, 2}-w_{M, 2}}=0.4, \\
\frac{w_{V, 3}-w_{M, 3}}{w_{\mathrm{MVP}, 3}-w_{M, 3}}=0.4,
\end{gathered}
$$

i.e. $\mathbf{w}_{V}=0.4 \mathbf{w}_{\mathrm{MVP}}+0.6 \mathbf{w}_{M}$ and thus lies on the minimum variance line. To show that the portfolio with weights \mathbf{w}_{V} lies on the efficient frontier we also require that $\mu_{V} \geq \mu_{\mathrm{MVP}}$, which is clear since

$$
\mu_{V}=0.4 \mu_{\mathrm{MVP}}+0.6 \mu_{M},
$$

and $\mu_{M}>\mu_{\mathrm{MVP}}$.

Problem 5

In order to obtain a contradiction suppose that $P_{E}(0)>P_{A}(0)$. Let us now construct an arbtrage strategy.

At time $t=0$ (short) sell the European option and buy the American option; which generates by the contradiction assumption a positive cash flow. Do not do anything until time T at which the negative European option yields $-\max \{X-$ $S(T) ; 0\}$ and the American option yields $\max \{X-S(T) ; 0\}$. Hence, the trading strategy yields exactly one net cash flow which is moreover strictly positive and we thus have an arbitrage opportunity. By the no-arbitrage principle it follows that we have a contradiction and hence the contradiction assumption does not hold and the statement in the problem has been proved.

