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Final Exam (at home) August 20, 2021

Instructions: You are allowed to consult the textbook. Notes and calculators are not allowed. Searching
the internet for solutions is NOT ALLOWED. Unless told otherwise, you may quote results that you
learned during the class. When you do, state precisely the result that you are using. Be sure to justify
your answers, and show clearly all steps of your solutions. In problems with multiple parts, results of
earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

On the first page, write the following

1. Your name

2. Your personal number

3. Write and sign the following pledge on the first page:

On my honor as a student, I have not received help or used inappropriate resources on
this exam.

After this, begin every problem on a new page (but you do not have to begin every part of a problem
on a new page).
Unless you have made provisions for extra time, the exam must be uploaded no later 15:00.

1. Here and throughout the test, Z/n denotes the cyclic group of order n, Sn is the group of permu-
tations of {1, . . . , n} and An ⊂ Sn is the subgroup of even permutations.

(a) [3 pts] Which of the following groups of order 60 are isomorphic to each other? Give a brief
and clear justification

1. Z/60, 2. A5, 3. Z/10×Z/6, 4. Z/3×Z/5×Z/4, 5. Z/2×Z/2×Z/3×Z/5, 6. A4×Z/5.

Solution: (1) is isomorphic to (4), (3) is isomorphic to (5), and otherwise the groups
are all distinct.
To prove that (1) is isomorphic to (4) and (3) is isomorphic to (5), use the Chinese
remainder theorem. To prove that the groups (1) and (4) are not isomorphic to (3)
and (5) use the fact that (1) and (4) have an element of order 4, while (3) or (5)
don’t. I leave the details of this to you.
Note that the groups (1), (4), (3) and (5) are abelian, while (2) and (6) are not
abelian. It follows that (2) and (6) are not isomorphic to any of the other 4 groups.
It remains to prove that (2) and (6) are not isomorphic to each other. There are many
ways to do it. One way is to note that the 5-Sylow subgroup of A5 is not normal,
while the 5-Sylow subgroup of A4 × Z/5 is normal (and even central). Again, I leave
you the details.

(b) [1 pt] Does there exist an injective group homomorphism Z/21 ↪→ A10?

Solution: Yes. The permutation (1, 2, 3)(4, 5, 6, 7, 8, 9, 10) is an even permutation
of 10 elements, so it is an element of A10. It has order 21, so it generates a cyclic
subgroup of order 21.
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(c) [1 pt] Does there exist an injective group homomorphism Q8 ↪→ S5? Here Q8 is the quaternion
group.

Solution: No. Let us first prove an auxiliary claim:
Claim: Suppose σ and τ are two elements of order 4 of S5, such that σ2 = τ 2. Then
either σ = τ or σ = τ−1.
Proof of claim: Suppose σ ∈ S5 is an element of order 4. Then σ must be a 4-cycle,
and we can write σ = (a, b, c, d). Then σ2 = (a, c)(b, d), and it is clear that the only
other 4-cycle whose square is (a, c)(b, d) is (a, d, c, b), which is the inverse of σ. This
proves the claim.
Now suppose, by contradiction, that f : Q8 ↪→ S5 is an injective homomorphism.
Notice that i, j are distinct elements of Q8 or order 4 satsifying i2 = j2 = −1, and
j 6= i−1. It follows that f(i) and f(j) are distinct elements of S5 or order 4, whose
squares are the same and that are not inverse to each other. This contradicts the
claim.

2. Let G be a group, and X ⊂ G a subset (not necessarily a subgroup). Recall that the centralizer of
X, denoted CG(X), is defined as follows

CG(X) = {g ∈ G | gx = xg for all x ∈ X}.

You can use without proof that CG(X) is always a subgroup of G.

(a) [2 pts] Suppose N is a normal subgroup of G. Prove that CG(N) is a normal subgroup of G.

Solution: Let c ∈ CG(N) and g ∈ G. We need to prove that gcg−1 ∈ CG(N). For
this, we need to prove that for every n ∈ N , gcg−1ngc−1g−1 = n. Since N is normal,
we can say that g−1ng = n1, where n1 ∈ N . So we have gcg−1ngc−1g−1 = gcn1c

−1g−1.
Since c ∈ CG(N), we can say that cn1c

−1 = n1, so gcg−1ngc−1g−1 = gn1g
−1. Now

recall that n1 = g−1ng, so gn1g
−1 = n. It follows that gcg−1ngc−1g−1 = n.

(b) [3 pts] Let A,B be (not necessarily normal) subgroups of G. Recall that AB = {ab | a ∈
A, b ∈ B}. Prove that CG(AB) = CG(A) ∩ CG(B).

Solution: First, let us prove that CG(AB) ⊂ CG(A). Suppose g ∈ CG(AB). This
means that for every a ∈ A and b ∈ B, we have gab = abg. In particular, we
can take b = e, which tells us that for every a ∈ A ga = ag, so g ∈ CG(A), and
we have proved the inclusion CG(AB) ⊂ CG(A). In the same way one proves that
CG(AB) ⊂ CG(B), and therefore CG(AB) ⊂ CG(A) ∩ CG(B). It remains to prove
that CG(A) ∩ CG(B) ⊂ CG(AB). Suppose g ∈ CG(A) ∩ CG(B). This means that
for every a ∈ A and b ∈ B, ga = ag and gb = bg. But then gab = agb = abg, so
g ∈ CG(AB).

3. Let GL3(R) be the group of invertible 3× 3 matrices. Define a function

f : GL3(R)→ GL3(R)

by the following formula

f(A) =
A

3
√

det(A)
.
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(a) [2 pts] Is f a homomorphism?

Solution: Yes. Let’s do the calculation

f(AB) =
AB

3
√

det(AB)
=

A
3
√

det(A)
· B

3
√

det(B)
= f(A) · f(B).

(b) [2 pts] Is f an injective function?

Solution: No. Suppose A = λI3, where I3 is the 3 × 3 identity matrix, and λ is a
scalar. Then det(A) = λ3, and A

3
√

det(A)
= λI3

λ
= I3. So matrices of the form λI3 are

in the kernel of f . Since f has a non-trivial kernel, it is not injective.
It is worth noting that the kernel of f consists precisely of matrices of the form λI3.
The group of such matrices is what we denote by Z3 below. We have shown that all
matrices of the form are in the kernel. I leave it to you to check that only matrices of
this form are in the kernel.

(c) [2 pts] is f a surjective function?

Solution: No. Recall that if A is an n× n matrix, and k is a scalar, then det(kA) =
knA. We are considering 3× 3-matrices. So for any matrix A,

det(f(A)) = det

(
A

3
√

det(A)

)
=

det(A)

det(A)
= 1.

It follows that the image of f is contained in SL3(R). On the other hand, for every
A ∈ SL3(R), f(A) = A, so the image of f is all of SL3(R). In any case, f is not
surjective.

Let Z3 consist of matrices of the form

a 0 0
0 a 0
0 0 a

, where a 6= 0. It is not difficult to check

that Z3 is a normal subgroup of GL3(R). You can assume this without proof. Recall also that
SL3(R) is the group of 3× 3 matrices of determinant 1.

(d) [2 pts] Prove that there is a group isomorphism

GL3(R)/Z3
∼= SL3(R).

Solution: By previous discussion, f can be considered as a surjective homomorphism
f : GL3(R) → SL3(R), whose kernel is exactly Z3. The desired result follows by the
first isomorphism theorem.

4. Let p, q be prime numbers satisfying 3 < p, p ≡ 2(mod 3), q = 2p + 1. For example, it could be
that p = 11 and q = 23.

Let G be a group with 3pq elements.

(a) [1 pt] Prove that G has a normal q-Sylow subgroup.

Solution: We know that nq|3p. So nq is one of 1, 3, p, and 3p. We want to prove that
nq = 1. We also know that nq ≡ 1(mod q). This excludes 3 and p, since 1 < 3, p < q.
We also know that 3p ≡ p− 1(mod q). Since 1 < p− 1 < 2p + 1 = q, it follows that
3p 6≡ 1(mod q). So nq = 1.



Department of mathematics,
Stockholm University
Examinator: Gregory Arone

MA 5020 - Abstract Algebra
Final Exam (at home) August 20, 2021

(b) [4 pts] Prove that G has a normal 3-Sylow subgroup.

Solution: We know that n3 can be one of 1, p, q, and pq. By assumption, p ≡
2(mod 3), and q ≡ 2 · 2 + 1 ≡ 2(mod 3). So n3 can not be p or q. We also know that
G has a normal q-Sylow subgroup Cq, so we can take the quotient of G by Cq, and
we have the quotient homomorphism

q : G→ G/Cq.

The group G/Cq has 3p elements, where p > 3 and p 6≡ 1(mod 3). It follows that G/Cq
has a normal 3-Sylow subgroup. Let H be the preimage of this 3-Sylow subgroup in
G. Then H is a normal subgroup of G of order 3q, where q 6≡ 1(mod 3). It follows that
H has a normal 3-Sylow subgroup, and therefore G has a normal 3-Sylow subgroup.

5. Let R = {a+ b
√

7 | a, b ∈ Z}. You can use without proof that R is a subring of the real numbers.
Let

I = {a+ b
√

7 ∈ R | a is divisible by 7}

(a) [2 pts] Prove that I is an ideal of R.

Solution: I leave you to check that I is an additive subgroup of R. Suppose a+b
√

7 ∈
I and c+ d

√
7 ∈ R Then we have

(a+ b
√

7)(c+ d
√

7) = ac+ 7bd+ (ad+ bc)
√

7.

By assumption, a is divisible by 7, and therefore ac+ 7bd is divisible by 7. It follows
that (a+ b

√
7)(c+ d

√
7) ∈ I, and we have proved that I is an ideal.

(b) [2 pts] Prove that I is a prime ideal.

Solution: Suppose that a+ b
√

7 ∈ R and c+ d
√

7 ∈ R, and (a+ b
√

7)(c+ d
√

7) ∈ I.
This means that ac + 7bd + (ad + bc)

√
7 ∈ I. This in turn means that ac + 7bd is

divisible by 7, which in turn implies that ac is divisible by 7. Since 7 is a prime, it
follows that either a or c is divisible by 7, which means that either a + b

√
7 ∈ I or

c+ d
√

7 ∈ I.

(c) [2 pts] Describe the quotient ring R/I.

Answer: The quotient ring is isomorphic to Z/7. Consider the homomorphism
f : R→ Z/7 defined by the formula f(a+ b

√
7) = a(mod 7). I leave you to check that

f is a surjective ring homomorphism, with kernel exactly I. The result follows.

(d) [1 pt] Is I a maximal ideal?

Solution: Yes. We saw that the quotient R/I is isomorphic to Z/7, which is a field.
It follows that I is a maximal ideal.


