MATEMATISKA INSTITUTIONEN Tentamensskrivning i
STOCKHOLMS UNIVERSITET Mathematics Methods for Economist MM3001
Avd. Matematik 2021-11-29
Examinator: Sofia Tirabassi

Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- Use of calculators is permitted for performing calculations. The use of graphic or programmable features is NOT permitted.
- Start every problem on a new page, and write at the top of the page which problem it belongs to. (But in multiple part problems it is not necessary to start every part on a new page)
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear/wrong reasoning even if the answer is correct.
- Write clearly and legibly.
- Where applicable, indicate your final answer clearly by putting A BOX around it.
Note: There are six problems, some with multiple parts. The problems are not ordered according to difficulty
(1) (5pt) Compute the degree 3 Taylor polynomial of the function $f(x)=e^{x^{2}}$, around the point $x_{0}=1$, and use it to give an approximation of $f(1.1)$.
Soulution: We begin by computing the first and second derivative of $f(x)$ in $x=1$:

$$
f^{\prime}(x)=2 x e^{x^{2}}
$$

We plug in $x=1$ and get $f^{\prime}(1)=2 e$. For the second derivative we have

$$
f^{\prime \prime}(x)=2 e^{x^{2}}+4 x^{2} e^{x^{2}}=\left(2+4 x^{2}\right) e^{x^{2}}
$$

In $x=1$ we get $f^{\prime \prime}(1)=6 e$. For the third derivative we have

$$
f^{\prime \prime \prime}(x)=8 x e^{x^{2}}+\left(4 x+8 x^{3}\right) e^{x^{2}}=\left(12 x+8 x^{3}\right) e^{x^{2}}
$$

In $x=1$ we get $f^{\prime \prime}(1)=20 e$. Now we have all the ingredients to compute the Taylor polynomial:

$$
p_{3}(x)=e^{1}+2 e(x-1)+3 e(x-1)^{2}+\frac{20}{3} e(x-1)^{3} .
$$

Then we have that

$$
f(1.1) \simeq p_{3}(1.1)=e+\frac{2 e}{10}+\frac{3 e}{100}+\frac{2 e}{300}=\frac{371}{300} e \simeq 3.616
$$

(2) The equation

$$
x e^{y}-y^{2}=2 x^{3}-e^{x-1}
$$

defines a curve.
(a) $(1 \mathrm{pt})$ Verify that point $(1,0)$ belongs to the curve.
(b) (3pt) Compute the slope of the tangent line to the curve in $(1,0)$.
(c) $(1 \mathrm{pt})$ Give the equation of the tangent line to the curve in $(1,0)$.

Solution: For the first point we must check that the RHS and the LHS are the same when $(x, y)=(1,0)$. We get

$$
R H S=1-0^{2}=1 ;
$$

$$
L H S=2-e^{0}=1 .
$$

As they are the same $(1,0)$ belongs to the curve.
The first thing to do in order to compute the slope of the curve in the given point is to derive the equation implicitly. We get

$$
-2 y^{\prime} y+e^{y}+x y^{\prime} e^{y}=6 x^{2}-e^{x-1}
$$

We impose again $(x, y)=(1,0)$ and get:

$$
0+e^{0}+y^{\prime}(1) e^{0}=6-e^{0}
$$

We solve for $y^{\prime}(1)$ and get $y^{\prime}(1)=4$, which is exactly the slope of the curve in $(1,0)$.

Finally, for the equation of the tangent line, we now that

$$
y=4 x+m,
$$

since the slope is exactly the slope of the curve. We have to find m given that the tangent passes through $(1,0)$. We get $m=-4$ so the equation we are looking for is

$$
y=4 x-4
$$

Consider the function $f(x)=\frac{x^{2}-1}{x^{2}-4}$.
(a) $(2 \mathrm{pt})$ Give the maximum and minimum value of the function in the interval $[-1,1]$.
(b) (2pt) Find where the function is increasing or decreasing and concave or convex.
(c) $(1 \mathrm{pt})$ Compute $\lim _{x \rightarrow+\infty} f(x)$.

Solution: Observe that the function is continuous on its domain $D=$ $\mathbb{R} \pm 2$, therefore it has max and min on $[-1 ; 1]$. We look for the critical points, by computing the first derivative:
$f^{\prime}(x)=\frac{2 x\left(x^{2}-4\right)-\left(x^{2}-1\right) 2 x}{\left(x^{2}-4\right)^{2}}=\frac{2 x\left(x^{2}-4-x^{2}+1\right.}{\left(x^{2}-4\right)^{2}}=\frac{-6 x}{\left(x^{2}-4\right)^{2}}$.
We have that $f^{\prime}(x)=0$ if, and only if, $x=0$, which is an element of the interval $[-1,1]$. The candidates for extreme points are $x= \pm 1,0$. We evaluate the functions in these points and we get:

$$
f(1)=f(-1)=0, \quad f(0)=\frac{1}{4}
$$

We deduce that the maximum value of the function in $[-1,1]$ is $\frac{1}{4}$ while the minimum value is 0 .

As $\left(x^{2}-4\right)^{2}$ is always positive, the function is increasing when $x \leq 0$, $x \neq-2$ and decreasing when $x \geq 0, x \neq 2$. For the concavity we have to compute the second derivative:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{-6\left(x^{2}-4\right)^{2}+24 x^{2}\left(x^{2}-4\right)^{2}}{\left(x^{2}-4\right)^{4}} \\
& =\frac{\left.\left(x^{2}-4\right)\left(-6 x^{2}-4\right)+24 x^{2}\right)}{\left(x^{2}-4\right)^{4}} \\
& =\frac{24+18 x^{2}}{\left(x^{2}-4\right)^{3}}
\end{aligned}
$$

As $24+18 x^{2}$ is always positive, we have that the concavity ofthe functions depends on the sign of $\left(x^{2}-4\right)^{3}$. Thus f is concave when $x \in(-2,2)$ and convex when $x<-2$ or $x>2$.

For the last part we have
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x^{2}\left(1-1 / x^{2}\right)}{x^{2}\left(1-4 / x^{2}\right)}=\lim _{x \rightarrow+\infty} \frac{1-1 / x^{2}}{1-4 / x^{2}}=\frac{1}{1}=1$
(3) Compute the following integrals:
(a) (3pt) $\int\left(x^{2} \ln \left(x^{3}+1\right)+5 x \ln (x)\right) d x$,
(b) $(2 \mathrm{pt}) \int_{4}^{\ln (8)} \frac{x}{6 \sqrt{x^{2}-15}} d x$.

Solution: We begin with the first

$$
\begin{aligned}
\int\left(x^{2} \ln \left(x^{3}+1+5 x \ln (x)\right) d x\right. & =\int x^{2} \ln \left(x^{3}+1\right) d x+\int 5 x \ln (x) d x \\
& =\frac{1}{3} \int \ln (u) d u+\int 5 x \ln (x) d x
\end{aligned}
$$

Where in the first summand I used the substitution $u=x^{3}+1$, so $d u=$ $3 x^{2} d x$. Going forward we get

$$
\begin{aligned}
\int\left(x^{2} \ln \left(x^{3}+1+5 x \ln (x)\right) d x\right. & =\frac{1}{3}(\ln (u) u-u)+C_{1}+\frac{5}{2} x^{2} \ln (x)-\frac{5}{4} x^{2}+C_{2} \\
& =\frac{1}{3}\left(\ln \left(x^{3}+1\right)\left(x^{3}+1\right)-\left(x^{3}+1\right)+\frac{5}{2} x^{2} \ln (x)-\frac{5}{4} x^{2}+C\right.
\end{aligned}
$$

For the second integral we set $u=x^{2}-15$. Thus $d u=2 x d x$. We need to recompute the extremes of integration. In order to do that we have that if $x=4$ then $u=1$, and if $x=\ln (8)$, the $u=2 \ln (8)-15$. Thus we get

$$
\begin{aligned}
\int_{4}^{\ln (8)} \frac{x}{6 \sqrt{x^{2}-15}} & =\frac{1}{12} \int_{1}^{\ln (8)} \frac{d u}{\sqrt{u}} d x \\
& =\frac{1}{24}\left[u^{\frac{1}{2}}\right]_{1}^{\ln (8)}=\frac{1}{24}\left(\ln (8)^{\frac{1}{2}}-1\right)
\end{aligned}
$$

(4) Consider the matrix

$$
A=\left(\begin{array}{ccc}
3 & 2 & 1 \\
k-1 & k-10 & -2 \\
3 & k+2 & 1
\end{array}\right)
$$

(a) (2 pt) Compute the determinant of $A,|A|$ as a function of k.
(b) (1 pt) Find all the values of k for which A is not invertible.
(c) $(2 \mathrm{pt})$ Determine whether the following linear system has 1,0 , or infinite many solutions:

$$
\left\{\begin{array}{ccc}
3 x+2 y+z & = & 1 \\
-1 x-10 y-2 z & = & -3 \\
3 x+2 y+z & = & 1
\end{array}\right.
$$

Solution: We perform elementary operation on the rows of A to make the computations of the determinant easier:

$$
\begin{aligned}
\left|\begin{array}{ccc}
3 & 2 & 1 \\
k-1 & k-10 & -2 \\
3 & k+2 & 1
\end{array}\right| & =\left|\begin{array}{ccc}
3 & 2 & 1 \\
k-1 & k-10 & -2 \\
0 & k & 0
\end{array}\right| \\
& =(-1)(k)(-6-(k-1))=(k)(k+5)
\end{aligned}
$$

We see immediately that $\operatorname{det}(A)=0$ if and only if $k=0$ or $k=-5$, so we deduce that A is invertible if $k \neq 0,-5$.

We attempt to solve the system we perform elementary row operations to the matrix

$$
\left(\begin{array}{ccc|c}
3 & 2 & 1 & 1 \\
-1 & 10 & -2 & -3 \\
3 & 2 & 1 & 1
\end{array}\right)
$$

We subtract the firs row to the third row:

$$
\left(\begin{array}{ccc|c}
3 & 2 & 1 & 1 \\
-1 & 10 & -1 & -3 \\
3 & 2 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
5 & 4 & 1 & 1 \\
-7 & -4 & -2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

As we have obtained a rows with all zero we know that the system is underdetermined. Therefore, it has infinite many solutions.
(5) Consider the two variables function

$$
f(x, y)=3 x^{3}-x^{2}-y^{2} .
$$

(a) (2pt) Find all the critical points of $f(x, y)$ and determine their type.
(b) (1 pt) Consider now the set $D=\left\{(x, y) \mid x \geq 0\right.$, and $\left.x^{2}+y^{2} \leq 1\right\}$. Draw a sketch of D and determine which critical points of $f(x, y)$ lie in the interior of D.
(c) $(2 \mathrm{pt})$ Determine the minimum and the maximum value of $f(x, y)$ on D.

Solution: We first compute the partial derivatives of f and set them to zero to find critical points for f in the interior of D. We get

$$
\begin{gathered}
\frac{\partial}{\partial x} f(x, y)=9 x^{2}-2 x=0 \\
\frac{\partial}{\partial y} f(x, y)=-2 y=0
\end{gathered}
$$

From the second equation we find $y=0$. In the first equation we find $x(9-2 x)=0$ Which has as solution $x=0$ and $x=2 / 9$. This yields two critical points: $(0,0)$ and $(2 / 9,0)$. To determine the type of the critical points we have to compute the Hessian matrix

$$
\mathcal{H}=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
18 x-2 & 0 \\
0 & -2
\end{array}\right)
$$

The determinant H of \mathcal{H} is $-2(18 x-2)$ we evaluate this in the two critical points. In $(0,0) H$ takes value 4 which is positive. As in $(0,0)$ we have that $f_{x x}=-2$ and $f_{y y}=-2$, we deduce that $(0,0)$ is a local maximum. In $(2 / 9,0), H$ has value 2 , so this is neither a minimum or a maximum point (it is a saddle point). The domain D consist in the interior of the unit circle in the first and fourth quadrant (see the gray are in the picture)

Both critical points lies in D as $4 / 81+0<1$. However $(0,0)$ is not in the interior of D and should not, a priori, be considered as a candidate for max or min point. In order to evaluate the min and max value of f in D we have to investigate the restriction of f to the boundary of D. Note that the boundary has two corners $(0,-1)$ and $(0,+1)$ these have to be investigate separately. The boundary consist of two curves, the curve $x=0$ and the curve $x^{2}+y^{2}=1$. See the picture.
Curve $x=0$. We have that $f(0, y)=-y^{2} . \frac{d}{d y} f(0, y)=-2 y$ has only one critical point when $y=0$ this yields the candidate $(0,0)$.
Curve $x^{2}+y^{2}=1$. If we restrict f to this curve we obtain the function $g(x)=3 x^{3}-1$. We have that $g^{\prime}(x)=9 x^{2}-1$ which yields the two critical points $x= \pm \frac{1}{3}$. As x needs to be nonnegative, we will consider only $x=1 / 3$ which yields $y= \pm \frac{\sqrt{8}}{3}$. Thus we get two further candidates for the max and min points $(1 / 3, \sqrt{8} / 3)$ and $(1 / 3,-\sqrt{8} / 3)$.
Conclusion: From the reasoning above we get 6 candidates for max and min points of $f,(0,0),(2 / 9,0),(1 / 3, \pm \sqrt{8} / 3)$, and $(0, \pm 1)$. We compute the values that f takes at these points (as the point $(2 / 9,0)$ is a saddle point we could avoind testing f in it):

$$
\begin{gathered}
f(0,0)=0 \\
f(2 / 9,0)=-4 / 243 . \\
f(1 / 3, \pm \sqrt{8} / 3)=1 / 9-1=-8 / 9 \\
f(0, \pm 1)=-1
\end{gathered}
$$

Of these the biggest is surely $f(0,0)$ - it is the only one which is non-negative- and the smallest is $f(0, \pm 1)$, so these are respectively the maximum and the minimum value of f in D.

FORMULAS

- Taylor polynomial of degree n of $f(x)$ around the point $x_{0}=a$:

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{(2)}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Texten på svenska

(1) (5pt) Bestäm Taylor polynomet av grad 2 till funktionen $f(x)=e^{-\sqrt{x+3}}$ kring punkten $x_{0}=2$.
(2) Betrakta funktionen $f(x)=\frac{x^{2}+x+3}{x+1}$.
(a) (2pt) Antar att f defineras på [0, 2]: bestäm max och min värden av f samt ge var dessa värden anta.
(b) (2pt) Antar nu att f defineras på $[0,+\infty)$. Har funktionen nu en max värde? Förklara din mening.
(c) (1pt) Bestäm $\lim _{x \rightarrow+\infty} \frac{f(x)}{6 x}$.
(3) Bestäm följande integraler:
(a) $(3 \mathrm{pt}) \int\left(x \ln \left(x^{2}+1\right)+3 \sqrt{x^{5}}\right) d x$,
(b) $(2 \mathrm{pt}) \int_{0}^{1} \frac{5 e^{3 x}}{1-3 e^{3 x}} d x$.
(4) Betrakta serien $2+\frac{4}{x}+\frac{8}{x^{2}}+\frac{16}{x^{3}}+\cdots$. Bestäm
(a) (2pt) for vilka x convergerar serien;
(b) (3pt) för vilka x är seriens värden 1.
(5) Låt

$$
A=\left(\begin{array}{ccc}
5 & 4 & 1 \\
k-7 & k-4 & -2 \\
5 & k-2 & 1
\end{array}\right)
$$

(a) (2 pt) Räkna determinanten till $A,|A|$ som en funktion av k.
(b) (1 pt) Hitta alla värden k sådana att A inte är invertibar.
(c) $(2 \mathrm{pt})$ Använd Gausselimination för att lösa det linjär systemet nedanför

$$
\left\{\begin{array}{cccc}
5 x+4 y+1 z & = & 1 \\
-7 x-4 y-2 z & = & -3 \\
5 x-2 y+z & = & 1
\end{array}\right.
$$

(6) Vi definearar området D i \mathbb{R}^{2} som kvadraten med hörnen

$$
(-1,-1), \quad(-1,1), \quad(1,-1), \quad(1,1)
$$

Låt $f(x, y)=x e^{3 y}-e^{x}$.
(a) (1pt) Skissa området D.
(b) (4pt) Bestäm max och min värde av $f(x, y)$ i D.

