
Answers and comments to exam on 2017-06-02 in
DA3018
The preliminary point scoring rules is indicated for some questions. We may
adjust the scoring.

1. (a) In asymptotic time complexity analysis, one often does not care how
many nanoseconds are actually needed for various operations, so the
simplification that all basic operations are the taking ”one unit of
time” is natural.

(b) Accessing an arbitrary element i in an array means computing the
memory address as ”starting address of array” plus ”the size of ele-
ments” times i. That computation is constant-time arithmetic. Refe-
rencing the actual memory address is also constant time on normal
computers.

(c) Since it is hard to figure out the exact time an algorithm might need,
we look at asymptotic time complexity to see how resource needs
(here: time) scales as input grows. This can help us estimate what is
feasible or not to compute.

(d) The worst-case time complexity of QuickSort is O(n2) and occurs
when pivot elements are badly chosen. If one, for example, chooses
the first element in the input array as pivot element, then having
sorted input will yield very unbalanced subproblems which causes
the bad performance.

2. (a) Consider the following pseudocode:

def write_keys(T):
if T:

write_keys(T.left)
print(T.key)
write_keys(T.right)

(b) On null input, nothing happens. When a tree node is given, then the
left subtree is first processed, meaning the all the keys of that subtree
are printed. Then, the current key is printed, before keys in the right
subtree are printed using a second recursive call.

(c) This is called inorder traversal.

(d) A binary search tree is unbalanced if the height of sub-
trees differ substantially. A simple example is given on
the right.
A regular traversal, like the one implemented by
write_keys, is not affected by balance, since every no-
de will have to be traversed. Regardless of balance, the
traversal takes O(n) time, for n vertices.

3. (a) The breadth-first traversal can be illustrated as follows.

def bfs(G, start):
for v in V(G):

1

visited[v] = False

queue = Queue()
queue.enqueue(start)
visited[start] = True

while not queue.empty():
v = queue.get_first()
print(v) # Show that we are traversing

vertices!
for w in G.neighbors(v):

if not visited[w]:
visited[w] = True
queue.enqueue(w)

Scoring : deduct a point per fundamental mistake. We allow slight
inefficiencies, but not asymptotic inefficiency.

(b) Here is the idea behind BFS:
• We keep track of which vertices we have visited using the array
visited, which is initialized in the first loop.

• The starting vertex is initializing the queue, and then we start
iterating over the contents of the queue.

• In each iteration, we extend the set of vertices to look at by
adding the neighbors of the current vertex to the queue.

• Since we are using a queue, the vertices we work with (here: print
them) are handled in the order they were found.

(c) The time complexity of O(|V | + |E|), since we (1) iterate over all
vertices and (2) by looking at neighbors actually look at each edge
twice.
More carefully: The initial for-loop is looping over all the vertices
doing constant-time operations, hence O(|V |). We can then count
the operations in the while loop by counting the number of times
a line in the pseudocode might be executed. A vertex is added and
removed from the queue at most once, so those operations are done at
most O(|V |) times. However, we are looking at the neighbors of each
node and the number of ”neighbor-relations” are exactly the number
of edges. If (v, w) ∈ E, then that edge pops up both for v neighbors
and w neighbors. It is reasonable to assume we implement the queue
and visited-array such that operations on these take O(1) time.
Scoring : 1p for observing cost of operations. 1p for noting complexity
of first loop. 1p for counting edges in the second loop.

4. Say that the length of s and t is m and n, respectively.

(a) We can note that the internal helper function at_position takes
time O(m), because it loops over the length of s to verify that cha-
racters of s matches the substring of t starting at i. In each iteration,
there are a constant number of arithmetic operations, assignments
and single-character comparisons.
The main function, is_substring, iterates over possible starting
points in t. Hence, there are O(n) iterations containing some basic

2

constant-time operations and a call to at_position, yielding a total
of O(mn) operations.
Scoring : 1p for time complexity of at_position. 1p for main loop,
and 1p for putting it together well.

(b) Looking for a substring in t can be seen as looking for the prefix of a
suffix of t. Since A contains sorted suffices, we can do binary search
over the suffices of t and check whether s is a prefix.

def is_substring(s, t, A):
m = len(s)
left = 0
right = len(A)
while left < right:

mid = (right + left) // 2
if s == t[A[mid] : A[mid] + m]:

return True
elif s < t[A[mid] : A[mid] + m]:

right = mid
elif s > t[A[mid] : A[mid] + m]:

left = mid+1
return False

Since this is a binary search, where the search interval is halved in
each iteration, there will be at most O(lg n) iterations (n = |A|). In
each iteration, there are a fixed number of arithmetic operations and
assignments, plus the relatively expensive operation of comparing
with s, which is O(m). Hence, in the worst case there are O(m lg n)
operations, which is significantly faster than O(mn).
As a side note, string comparisons of this kind can be done in O(m+
n) time using several algorithms.
Scoring : 2p for correct algorithm which is faster than O(mn), with
additional 1p for explanation. 2p for time complexity.

5. One attempt to formulate a computational problem is here. There are
more ways of doing it!

The Forest Thinning Problem is defined as:

• Input: a set of coordinates C = {(x0, y0), (x1, y1), . . .} and a minimum
distance α.

• Output: The largest subset C ′ ⊆ C such that for any two points
pi, pj ∈ C ′, the distance from pi to pj is at least α and |C ′|.

Scoring : 2p for clearly stating input and output. 1p for stating an optimi-
zation problem. 1p for formalizing something like coordinates and 1p for
noting a distance constraint.

6. (a) First note that there are five values to store for each observation in
the data. It is given that the time stamp takes four bytes, and since it
is reasonable that coordinates and intensity measurement are stored
as 32-bit floats, we can assume 5× 4 = 20 bytes per observation.
Using an array to store these elements has no memory overhead at
all: the datastructure needs 20× 109 bytes, which is 20 GB and can

3

actually easily fit in relatively inexpensive computers (at least relative
to Physics department expenses).

(b) Selection sort has quadratic time complexity, which is really bad on
large datasets. In this case, quadratic time means on the order of
1018 operations and with a modern computer we can assume one
operation per 10−9 seconds, so the sorting would take roughly 109

seconds which is something like 32 years.
(c) We need a sorting algorithm that runs in O(n lg n) time, because that

would mean a running time like Cn lg n. Since lg 109 = 9 × lg 10 ≈
9×3.3 ≈ 30, running time would be measured in minutes rather than
years.
An algorithm that runs in place avoids extra memory allocation.
Heapsort is such an algorithm and would probably suit this problem
very well. So zero extra memory.

(d) Instead of 20 bytes per element, we have to add to references to
children. Depending on implementation, we might need memory for
a reference to memory objects too, but one can avoid that and I
consider this an unnecessary complication. In a memory-saving im-
plementation, we would let the key (time stamp) and observation
data be float and int attributes in the BST nodes. Therefore, the
extra memory we should count is the memory for references. A me-
mory address (the reference) is 8 bytes on a modern computer (but I
will accept 4 bytes too, if clearly stated), so it is an additional 16×109

bytes, or an increase of 16/20 ≈ 80%.

7. Create a vertex vg for each gene g and wi for each experiment i, giving
vertices V = vg and W = wi such that |V | = n and |W | = m ≤ n. The
edge set E contains edges for those vertices for which xg,i = 1, i.e., the
pairs g, i given in the input. Note that |E| ≤ cn.

If xa,j = xb,j = 1, then we wanted a and b to be in the same partition. In
our graph G = (V ∪W,E), those genes’ vertices will be connected through
edges (va, wj) and (vb, wj). Transitively, if xa,k = 0 and xc,j = 0, a and c
could be in the same partition if there is an experiment connecting c with
b.

A connected component in G would define the gene partitions we are
looking for. If va and vb are in the same component, then we now that
there is one or more experiments connecting a and b. If va and vb are
in different components, then such experiments are missing and a and b
should be in different partitions.

Creating the graph, effectively reading input, takes time O(cn) = O(n) if
we use an adjacency list format. Connected components can be computed
using DFS (which works nicely with adjacency lists) in time O(|V |+ |W |+
|E|) = O(n + m + cn) = O(n). Translating components to gene sets is
easily done in O(n) time. Altogether, we keep within the requested time
complexity.

I encountered a problem like this when looking at solutions for a research
question a couple of weeks ago! Recognizing it as a graph problem, con-
nected components, enabled me to immediately see that solutions could

4

be computed fast and made implementation easy (I could use an existing
routine in SciPy).

Scoring : 2p for a good formalization, with justification for the computa-
tional objective. 2p for a fast algorithm. 2p for correct time complexity
analysis.

5

