MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET<br>Avdelning Matematik<br>Examinator: Pavel Kurasov

Solution to the exam in
ODE, 7.5 hp
may 24, 2022

1 We solve the homogeneous equation first:

$$
\begin{gathered}
\lambda^{2}-5 \lambda+6=0 \Rightarrow \lambda_{1,2}=2,3 \\
\quad \Rightarrow y_{\text {hom }}=c_{1} e^{2 x}+c_{2} e^{3 x} .
\end{gathered}
$$

Particular solution to the non-homogeneous equation can be found in the form

$$
y_{p}=(a x+b) e^{x}
$$

Substitution into the original equation gives:

$$
2 a e^{x}+(a x+b) e^{x}-5\left(a e^{x}+(a x+b) e^{x}\right)+6(a x+b) e^{x}=2 x e^{t}
$$

Comparing the coefficients in front of $x e^{x}$ and $e^{x}$ we get the linear system:

$$
\left\{\begin{array}{l}
a-5 a+6 a=2, \\
2 a+b-5 a-5 b+6 b=0
\end{array} \Rightarrow a=1, b=3 / 2\right.
$$

The general solution to the differential equation is

$$
y=(x+3 / 2) e^{x}+c_{1} e^{2 x}+c_{2} e^{3 x} .
$$

To satisfy the initial conditions we need to choose $c_{1}$ and $c_{2}$ :

$$
\left\{\begin{array}{l}
3 / 2+c_{1}+c_{2}=0 \\
1+3 / 2+2 c_{1}+3 c_{2}=0
\end{array} \Rightarrow c_{1}=-2, c_{2}=1 / 2\right.
$$

Summing up the solution is

$$
y=\left(x+\frac{3}{2}\right) e^{t}-2 e^{2 t}+\frac{1}{2} e^{3 t}
$$

2 Assume that the solution is given by the power series: $y=\sum_{k=0}^{\infty} a_{k} x^{k}$. Then we have:

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
& y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{3}+\ldots \\
& y^{\prime \prime}=2 a_{2}+6 a_{3} x+\ldots
\end{aligned}
$$

Substitution into the differential equation gives:
$x^{2}\left(2 a_{2}+6 a_{3} x+\ldots\right)+x\left(a_{1}+2 a_{2} x+3 a_{3} x^{3}+\ldots\right)-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)=x+x^{2}+x^{3}+\ldots$
We check coefficients in front of different powers of $x$ :

$$
\begin{array}{ll}
x^{0}: & -a_{0}=0 \\
x^{1}: & a_{1}-a_{1}=1 \\
x^{2}: & 2 a_{2}+2 a_{2}-a_{2}=1
\end{array}
$$

Already the second equality is impossible to satisfy implying that no solutions given by the power series exists.

3 The matrix

$$
\left(\begin{array}{ll}
-1 & -7 \\
-7 & -1
\end{array}\right)
$$

has eigenvalues 6 and -8 with the eigenvectors $\binom{1}{-1}$ and $\binom{1}{1}$, respectively. General solution to the linear system is given by

$$
c_{1}\binom{1}{-1} e^{6 t}+c_{2}\binom{1}{1} e^{-8 t}
$$

The solution satisfying the initial conditions is

$$
3\binom{1}{1} e^{-8 t}
$$

The system is unstable since one of the eigenvalues is positive $(\lambda=6)$.
4 The equilibrium points must satisfy

$$
\begin{aligned}
& -2 \sin x+(x+2 y)^{2}=0 \\
& -(x+2 y)=0
\end{aligned}
$$

implying in particular that $\sin x=0 \Rightarrow x=\pi n, n \in \mathbb{Z}$. Then $y$ is calculated form the second equation $y=-\frac{\pi}{2} n$.
The linearised system near $(0,0)$ is

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-2 x \\
\frac{d y}{d t} & =-x-2 y
\end{aligned}\right.
$$

The Liapunov function can be taken in the form $L(x, y)=x^{2}+y^{2}>0, \quad(x, y) \neq(0,0)$. Really we have
$L_{x} x^{\prime}+L_{y} y^{\prime}=2 x(-2 x)+2 y(-x-2 y)=-4 x^{2}-2 x y-4 y^{2}=-3 x^{2}-(x+y)^{2}-3 y^{2}<0, \quad(x, y) \neq(0,0)$.
5 The operator os symmetric:

$$
\begin{aligned}
<L u, v> & =\int_{0}^{\pi}\left(-u^{\prime \prime}\right) v d x=-\left.u^{\prime}(x) v(x)\right|_{x=0} ^{\pi}+\left.u(x) v^{\prime}(x)\right|_{x=0} ^{\pi}+\int_{0}^{\pi} u\left(-v^{\prime \prime}\right) d x \\
& =-\underbrace{u^{\prime}(\pi)}_{=0} v(\pi)+u^{\prime}(0) \underbrace{v(0)}_{=0}+u(\pi) \underbrace{v^{\prime}(\pi)}_{=0}-\underbrace{u(0)}_{=0} v^{\prime}(0)+\langle u, L v>,
\end{aligned}
$$

since $u, v$ belong to the domain and satisfy the boundary condiitions.
The eigenfunctions are solution to the equation $y^{\prime \prime}=\lambda y, \quad \lambda=k^{2}$. Every solution is of the form

$$
y=a \sin k x+b \cos k x .
$$

Checking boundary condition at $x=0$ we conclude that

$$
y=a \sin k x .
$$

The boundary condition at $x=\pi$ gives

$$
\cos k \pi=0 \Rightarrow k=1 / 2+n, \quad n \in \mathbb{N} .
$$

Hence the eigenvalues and the eigenfunctions are $\lambda_{n}=\left(\frac{1}{2}+n\right)^{2}, \psi_{n}=a_{n} \sin \left(\frac{1}{2}+n\right) x$, $n=0,1,2,3, \ldots$ The normalisation constants $a_{n}$ are calculated from

$$
\left(a_{n}\right)^{-2}=\int_{0}^{\pi}\left(\sin \left(\frac{1}{2}+n\right) x\right)^{2} d x=\pi / 2 \Rightarrow a_{n}=\sqrt{\frac{2}{\pi}} .
$$

We get the following eigenfunction expansion:

$$
f(x)=\sum_{n=0}^{\infty} c_{n} \sqrt{\frac{2}{\pi}} \sin \left(\frac{1}{2}+n\right) x, \quad c_{n}=\int_{0}^{\pi} f(x) \sqrt{\frac{2}{\pi}} \sin \left(\frac{1}{2}+n\right) x d x .
$$

