MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET
 Avdelning Matematik
 Examinator: Pavel Kurasov

Solution to the exam in
ODE, 7.5 hp
August 24, 2022

1 We solve the homogeneous equation first:

$$
\begin{gathered}
\lambda^{2}-7 \lambda+12=0 \Rightarrow \lambda_{1,2}=3,4 \\
\quad \Rightarrow y_{\text {hom }}=c_{1} e^{3 x}+c_{2} e^{4 x} .
\end{gathered}
$$

Particular solution to the non-homogeneous equation can be found in the form

$$
y_{p}=(a x+b) e^{x} .
$$

Substitution into the original equation gives:

$$
2 a e^{x}+(a x+b) e^{x}-7\left(a e^{x}+(a x+b) e^{x}\right)+12(a x+b) e^{x}=6 x e^{t}
$$

Comparing the coefficients in front of $x e^{x}$ and e^{x} we get the linear system:

$$
\left\{\begin{array}{l}
a-7 a+12 a=6, \\
2 a+b-7 a-7 b+12 b=0
\end{array} \Rightarrow a=1, b=1\right.
$$

The general solution to the differential equation is

$$
y=(x+1) e^{x}+c_{1} e^{2 x}+c_{2} e^{3 x} .
$$

To satisfy the initial conditions we need to choose c_{1} and c_{2} :

$$
\left\{\begin{array}{l}
1+c_{1}+c_{2}=0 \\
1+1+3 c_{1}+4 c_{2}=0
\end{array} \Rightarrow c_{1}=-2, c_{2}=1\right.
$$

Summing up the solution is

$$
y=(x+1) e^{t}-2 e^{2 t}-2 e^{3 t}+e^{4 x}
$$

2 Assume that the solution is given by the power series: $y=\sum_{k=0}^{\infty} a_{k} x^{k}$. Then we have:

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
& y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{3}+\ldots \\
& y^{\prime \prime}=2 a_{2}+6 a_{3} x+\ldots
\end{aligned}
$$

Substitution into the differential equation gives:
$x^{2}\left(2 a_{2}+6 a_{3} x+\ldots\right)+x\left(a_{1}+2 a_{2} x+3 a_{3} x^{3}+\ldots\right)-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)=x^{3}+x^{4}+x^{5}+\ldots$
We check coefficients in front of different powers of x :

$$
\left.\left.\begin{array}{ll}
x^{0}:-a_{0}=0 & \Rightarrow a_{0}=0 \\
x^{1}: a_{1}-a_{1}=0 & \Rightarrow a_{1}-\text { arbitrary } \\
x^{2}: 2 a_{2}+2 a_{2}-a_{2}=0 & \Rightarrow a_{2}=0 \\
x^{3}: 6 a_{3}+3 a_{3}-a_{3}=0 & \Rightarrow a_{3}=\frac{1}{8} \\
\vdots &
\end{array}\right] \begin{array}{ll}
\\
x^{k}: & k(k-1) a_{k}+k a_{k}-a_{k}=0
\end{array}\right) \Rightarrow a_{k}=\frac{1}{k^{2}-1}, k=3,4,5, \ldots .
$$

We get the following general solution:

$$
y(x)=\alpha x+\sum_{k=3}^{\infty} \frac{1}{k^{2}-1} x^{k}
$$

where α is an arbitrary constant.

3 The matrix
has eigenvalues -1 and 6 with the eigenvectors $\binom{5}{-2}$ and $\binom{1}{1}$, respectively. General solution to the linear system is given by

$$
c_{1}\binom{5}{-2} e^{-t}+c_{2}\binom{1}{1} e^{6 t} .
$$

The solution satisfying the initial conditions is

$$
-\binom{5}{-2} e^{-t}
$$

The system is unstable since one of the eigenvalues is positive $(\lambda=6)$.
4 The equilibrium points must satisfy

$$
\begin{aligned}
& -x+\frac{1}{2} \sin y=0 \\
& -x-5 y=0
\end{aligned}
$$

implying in particular that $\sin y=-10 y \Rightarrow y=0$. Then x is calculated from any of the equations $x=0$.
There is just one critical point $(0,0)$.
The linearised system near this point is

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =-x+\frac{1}{2} y, \\
\frac{d y}{d t} & =-x-5 y .
\end{aligned}\right.
$$

The eigenvalues are

$$
\lambda_{1,2}=-3 \pm \sqrt{\frac{7}{2}}
$$

and both are negative, hence the system is stable near this critical point.
The Lyapunov function can be taken in the form: $L(x, y)=x^{2}+b y^{2}>0,(x, y) \neq(0,0), b>0$. Really we have

$$
L_{x} x^{\prime}+L_{y} y^{\prime}=2 x\left(-x+\frac{1}{2} y\right)+2 y(-x-5 y)=-2 x^{2}+x y-2 b x y-10 b y^{2} .
$$

Choosing $b=1 / 2$ we get:

$$
L_{x} x^{\prime}+L_{y} y^{\prime}=-2 x^{2}-5 y^{2}<0, \quad(x, y) \neq(0,0)
$$

5 The operator is symmetric:

$$
\begin{aligned}
<L u, v> & =\int_{0}^{\pi}\left(-u^{\prime \prime}\right) v d x=-\left.u^{\prime}(x) v(x)\right|_{x=0} ^{\pi}+\left.u(x) v^{\prime}(x)\right|_{x=0} ^{\pi}+\int_{0}^{\pi} u\left(-v^{\prime \prime}\right) d x \\
& =-u^{\prime}(\pi) \underbrace{v(\pi)}_{=0}+u^{\prime}(0) \underbrace{v(0)}_{=0}+\underbrace{u(\pi)}_{=0} v^{\prime}(\pi)-\underbrace{u(0)}_{=0} v^{\prime}(0)+<u, L v>,
\end{aligned}
$$

since u, v belong to the domain and satisfy the boundary condiitions.
The eigenfunctions are solution to the equation $y^{\prime \prime}=\lambda y, \quad \lambda=k^{2}$. Every solution is of the form

$$
y=a \sin k x+b \cos k x .
$$

Checking boundary condition at $x=0$ we conclude that

$$
y=a \sin k x .
$$

The boundary condition at $x=\pi$ gives

$$
\sin k \pi=0 \Rightarrow k=n, \quad n=1,2, \ldots
$$

Hence the eigenvalues and the eigenfunctions are $\lambda_{n}=(n)^{2}, \psi_{n}=a_{n} \sin n x, n=1,2,3, \ldots$ The normalisation constants a_{n} are calculated from

$$
\left(a_{n}\right)^{-2}=\int_{0}^{\pi}(\sin n x)^{2} d x=\pi / 2 \Rightarrow a_{n}=\sqrt{\frac{2}{\pi}} .
$$

We get the following eigenfunction expansion:

$$
f(x)=\sum_{n=0}^{\infty} c_{n} \sqrt{\frac{2}{\pi}} \sin n x, \quad c_{n}=\int_{0}^{\pi} f(x) \sqrt{\frac{2}{\pi}} \sin n x d x
$$

which is nothing else than the standard sine Fourier transform.

