Suggested solutions

Exam: Introduction to Finance Mathematics (MT5009), 2022-08-17

Problem 1

(A) The value of the bond is $e^{-r} C+e^{-2 r}(F+C)=113.30$.
(B) The value of the bond is $e^{-5 r}=0.8607$. The value of the bond in $t \leq 5$ years is $e^{-r(5-t)}$. The second problem thus amounts to solving the equation $e^{-r(5-t)}=0.9$ whose solution is

$$
t=\frac{\ln (0.9)}{r}+5=1.4880
$$

which is therefore the answer.

Problem 2

Solution

(A) The spot rates are the yields $y(0, N)$ dictated by the current prices (see Capinski \& Zastawniak, p. 247). We get the following equations for the yields

$$
\begin{aligned}
& 95=100 e^{-y(0,1)} \\
& 92=100 e^{-2 y(0,2)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& y(0,1)=-\ln (95 / 100) \approx 5.13 \% \\
& y(0,2)=-\frac{1}{2} \ln (92 / 100) \approx 4.17 \%
\end{aligned}
$$

(B) If the term structure is deterministic, then the interest rate on a loan between time $t=1$ and $t=2$ will be given by the initial forward rate (see Capinski \& Zastawniak, pp. 249-251),

$$
f(0,1,2)=\frac{2 y(0,2)-y(0,1)}{2-1} \approx 3.21 \%
$$

(C)

- Time $t=0$: You buy 100 one-year bonds for $100 \cdot 95$ SEK. To pay for this you borrow for two years at rate $y(0,2)$ by shorting $9500 / 92 \approx 103.26$ two-year zero-coupon bonds.
- Time $t=1$: You receive 10000 SEK from the one-year bonds.
- Time $t=2$: You close the short position in the two-year bonds, by paying 9500/92 $100 \approx 10326.09$ SEK.
In this way you have constructed a loan between $t=1$ and $t=2$ at rate $\ln ((9500 / 92 \cdot 100) / 10000)=\ln (95 / 92) \approx 3.21 \%$.

Problem 3

Solution

(A) Using the notation in Capinski \& Zastawniak, we have

$$
\mathbf{C}=\left(\begin{array}{cc}
\sigma_{1}^{2} & c_{12} \\
c_{12} & \sigma_{2}^{2}
\end{array}\right)
$$

hence

$$
\mathbf{C}^{-1}=\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}-2 c_{12}}\left(\begin{array}{cc}
\sigma_{2}^{2} & -c_{12} \\
-c_{12} & \sigma_{1}^{2}
\end{array}\right)
$$

hence

$$
\mathbf{w}_{\mathrm{MVP}}=\frac{\mathbf{u C ^ { - 1 }}}{\mathbf{u C ^ { - 1 }} \mathbf{u}^{\top}}=\frac{1}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 c_{12}}\left(\sigma_{2}^{2}-c_{12} \quad \sigma_{1}^{2}-c_{12}\right)
$$

Using that $c_{12}=\rho_{12} \sigma_{1} \sigma_{2}$ we obtain

$$
\mathbf{w}_{\mathrm{MVP}} \approx(0.829,0.171)
$$

(B) The optimization problem is

$$
\begin{aligned}
& \operatorname{minimize} \mathbf{w} \mathbf{C w}^{\top}, \\
& \text { subject to } \mathbf{w} \mathbf{u}^{\top}=1
\end{aligned}
$$

(C) See Capinski \& Zastawniak, p. 73.

Problem 4

Consider the following scheme:

- At $t=0$ (today) lend $100 / 1.03^{2}$ USD for two years at 3%; this has cash flow 100 USD in two years.
- At $t=0$ borrow $100 / 1.03^{2}$ EUR for two years at 1%; this has cash flow $-100 \cdot 1.01^{2} / 1.03^{2}$ EUR in two years.

This scheme gives zero cash flow at $t=0$ (since a EUR and a USD currently ave the same value) and the cash flow in EUR at $t=2$ is

$$
100\left(S(2)-1.01^{2} / 1.03^{2}\right)
$$

in two years; where $S(2)$ is the (random) EUR value of a USD in two years. Under the no-arbitrage assumption we thus find that the forward price is

$$
100 \cdot 1.01^{2} / 1.03^{2}=96.15421
$$

Problem 5

We find a replicating portfolio according to

$$
\begin{aligned}
& x\left(1+K_{E U R}\right) S^{u}+y\left(1+K_{S E K}\right)=C^{u}=\max \left\{S^{u}-X ; 0\right\} \\
& x\left(1+K_{E U R}\right) S^{d}+y\left(1+K_{S E K}\right)=C^{d}=\max \left\{S^{d}-X ; 0\right\}
\end{aligned}
$$

where x is the number of EUR in the replicating portfolio and y is the number of SEK. Plugging in the numbers and solving yields

$$
\begin{aligned}
& x=0.4902 \\
& y=-4.4554 .
\end{aligned}
$$

Since the value of the replicating portfolio must (by the no arbitrage principle) be equal to the price of the derivative we conclude that it is

$$
C(0)=x S(0)+y=0.4465 .
$$

