STOCKHOLM UNIVERSITY
Department of Mathematics
Salvador Rodríguez-López
Lefteris Theodosiadis

Examination in
Mathematics for Economic and Statistical Analysis
MM1005, Fall term; 7,5 ECTS
Wednesday 10 November, 2021

Instructions:

- During the exam you may not use any textbook, class notes, or any other supporting material.
- Non-graphical calculators will be provided for the exam by the department. Other calculators may not be used.
- In all solutions, justify your answers and communicate your reasoning.
- Use natural language, not just mathematical symbols. Write clearly and legibly
- Mark your final answer to each question clearly by putting a a box around it.

1. (a) [3p] Determine the value of the parameter b such that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-16 b x}-\sqrt{1-8 x}}{4 x}=1 / 2
$$

(b) [2p] Calculate the limit

$$
\lim _{x \rightarrow 0} \frac{e^{-4 x}-1}{2 x}
$$

Solution (a) An algebraic manipulation yields

$$
\frac{\sqrt{1-16 b x}-\sqrt{1-8 x}}{4 x}=\frac{(1-16 b x)-(1-8 x)}{4 x(\sqrt{1-16 b x}+\sqrt{1-8 x})}=\frac{2-4 b}{\sqrt{1-16 b x}+\sqrt{1-8 x}}
$$

which implies that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-16 b x}-\sqrt{1-8 x}}{4 x}=\frac{2-4 b}{2}=1-2 b=1 / 2 \Leftrightarrow b=\frac{1}{4}
$$

(b) Applying L'Hopital's gives us that

$$
\lim _{x \rightarrow 0} \lim _{x \rightarrow 0} \frac{e^{-4 x}-1}{2 x}=\lim _{x \rightarrow 0}-2 e^{-4 x}=-2
$$

2. Calculate the integrals
a) $[\mathbf{3 p}] \int_{-1}^{0} 15 x \sqrt{1+x} \mathrm{~d} x$
b) $[\mathbf{2 p}] \quad \int_{0}^{+\infty} 3^{-t} \mathrm{~d} t$

Solution

$$
\begin{aligned}
\int_{-1}^{0} 15 x \sqrt{1+x} \mathrm{~d} x= & 6(1+x)^{5 / 2}-\left.10(1+x)^{3 / 2}\right|_{-1} ^{0}=-4 \\
& \int_{0}^{+\infty} 3^{-t} \mathrm{~d} t=\frac{1}{\ln 3}
\end{aligned}
$$

3. The expression

$$
\sqrt{x^{2}+2 y}+x y^{2}=2
$$

defines y as a function of $x: y=y(x)$.
(a) $[\mathbf{1} \mathbf{p}]$ Find the values of $y(0)$.
(b) [3p] Find the equation of the tangent line to $y(x)$ at the point $P=(0, y(0))$.
(c) $[\mathbf{1} \mathbf{p}]$ Is $y(x)$ increasing or decreasing at the point $(0, y(0))$. Argument your answer.

Solution Setting $y(0)$ one sees that the equations is satisfied, if and only if

$$
\sqrt{2 y(0)}=2 \Leftrightarrow y(0)=2
$$

Implicit differentiation gives

$$
\left(x^{2}+2 y\right)^{-1 / 2}\left(x+y^{\prime}\right)+y^{2}+2 x y y^{\prime}=0 .
$$

Hence

$$
\frac{y^{\prime}(0)}{2}+y(0)^{2}=0 \Leftrightarrow y^{\prime}(0)=-2 y(0)^{2}=-8
$$

So the equation of the tangent line at the point P is

$$
Y=2-8 x
$$

4. [5p] Determine for which x is the series $\sum_{n=0}^{\infty}(1+x)^{-2 n}$ convergent, and when does the sum equals 2 .

Solution The series converges if and only if

$$
|1+x|>1 \Leftrightarrow 1+x>1 \quad \text { or } \quad 1+x<-1 \Leftrightarrow x>0 \quad \text { or } \quad x<-2 .
$$

Note that for those values of x that the series converges, the sum of the series equals 2 if and only if

$$
\begin{aligned}
\frac{1}{1-(1+x)^{-2}} & =\frac{(1+x)^{2}}{(1+x)^{2}-1}=2 \Leftrightarrow(1+x)^{2}=2(1+x)^{2}-2 \Leftrightarrow(1+x)^{2}=2 \\
& \Leftrightarrow x+1= \pm \sqrt{2} \Leftrightarrow x=-1 \pm \sqrt{2}
\end{aligned}
$$

Nb. $-1+\sqrt{2} \approx 0.414214$ and $-1-\sqrt{2} \approx-2.41421$.
5. [5p] Determine the maximum and minimum value of the function

$$
f(x, y)=-x^{2}+x y-1
$$

on the quadrilateral with corners

$$
(0,0),(3,0),(3,5) \quad \text { and } \quad(0,2)
$$

Solution The partial derivatives of f are

$$
f_{x}(x, y)=-2 x+y \quad f_{y}(x, y)=x
$$

So the only stationary point is

$$
x=(0,0)
$$

which does not lie inside the quadrilateral.
The boundary of the domain consist of four parts

$$
\begin{aligned}
& L_{1}:=\{(x, y): y=0, x \in[0,3]\}, \\
& L_{2}:=\{(x, y): x=3, y \in[0,5]\}, \\
& L_{3}:=\{(x, y): y=x+2, x \in[0,3]\}, \\
& L_{4}:=\{(x, y): x=0, y \in[0,2]\} .
\end{aligned}
$$

On the last one we have

$$
f(0, y)=-1 \quad y \in[0,6]
$$

On the first part of the boundary we have

$$
f(x, 0)=-x^{2}-1, \quad x \in[0,3]
$$

which has no critical point inside the interval. Evaluating gives us

$$
f(0,0)=-1 \quad f(3,0)=-10
$$

On L_{2} we have that

$$
f(3, y)=-10+3 y, \quad y \in[0,5]
$$

which has no critical points inside the interval. Evaluating the function on the extremes gives

$$
f(3,0)=-10, \quad f(3,5)=5
$$

On L_{3}, we have that

$$
\begin{aligned}
h(x) & =f(x, x+2)=-x^{2}+x(x+2)-1 \\
& =2 x-1 \quad x \in[0,3]
\end{aligned}
$$

which has no critical points inside the interval. Evaluating yields

$$
h(0)=f(0,2)=-1, \quad h(3)=f(3,5)=5
$$

Then, we obtain that the maximum and minimum values of f with the given constrains are respectively

$$
5 \quad \text { and } \quad-10
$$

6. [5p] Determine for which values of the parameter a, the system

$$
\left\{\begin{array}{l}
a x+y+3 z=2 \\
2 x+y+a z=2 \\
2 x+y+3 z=a
\end{array}\right.
$$

has exactly one solution, no solution, or infinitely many solutions.
Solution The determinant of the matrix of coefficients is $-6+5 a-a^{2}=(2-a)(a-3)$.
If $a \notin\{2,3\}$ the system has a unique solution.
If $a=3$, the last two equations of the system read

$$
\left\{\begin{array}{l}
2 x+y+3 z=2 \\
2 x+y+3 z=2
\end{array}\right.
$$

which has no solution. Therefore, the whole system has no solution.
If $a=2$, the system is equivalent to

$$
\left\{\begin{array}{l}
2 x+y+2 z=2 \\
2 x+y+3 z=2
\end{array}\right.
$$

which implies that the system has an infinite number of solutions of the form $(x, y, z)=(1,0,0)+t(1,-2,0)$, where $t \in \mathbb{R}$.

