- You may use the text (Dummit and Foote).
- You may not use class notes and/or any notes and study guides you have created.
- You may not use a calculator, a cell phone or computer.
- You may quote results that are proved in the book. When you do, state precisely the result that you are using, or give a precise pointer to the book.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

1. Let $H \subset S_{4}$ be the subgroup generated by $(1,3)$ and $(1,2,3,4)$.
(a) (2 points) List the elements of H.
(b) (2 points) Is H a normal subgroup of S_{4} ?
2. Let G be a group with the property that for every $x \in G, x^{2}=e$
(a) (2 points) Prove that G is abelian.
(b) (2 points) Suppose that G is also finite. Prove that the number of elements of G is a power of 2 .
3. Suppose G is a group acting on a set X. Recall that the action is said to be

- transitive if for all $u, v \in X$, there exists a $g \in G$ such that $g u=v$.
- free if for all $g \in G \backslash\{e\}$ and all $x \in X, g x \neq x$.

Suppose K and H are subgroups of G. Let G / H denote the set of left cosets of H. Then K acts on G / H by the formula $k \cdot(g H)=(k g) H$. This is the restriction of the standard action of G on G / H.
(a) (2 points) Prove that the action of K on G / H is transitive if and only if $K H=G$.
(b) (2 points) For which values of n is the action of A_{n} on S_{n} / C_{n} transitive? Here A_{n} denotes the alternating group, and C_{n} is the cyclic subgroup of S_{n} generated by the cycle $(1,2, \ldots, n)$.
(c) (3 points) Let p and q be distinct primes. Suppose that P and Q are a p-subgroup and a q-subgroup of G respectively. Prove that the action of P on G / Q is free.
4. (a) (3 points) Prove that a group with 132 elements can not be simple.
(b) (3 points) Prove that a group with 216 elements can not be simple.
5. (3 points) Find all the maximal ideals of the ring $\mathbb{Z} \times \mathbb{Z}$.

Hint: show that every ideal of $\mathbb{Z} \times \mathbb{Z}$ is of the from $I \times J$, where I and J are ideals of \mathbb{Z}.
6. Let $R=\mathbb{Z}[\sqrt{-5}]$ be the subring of \mathbb{C} consisting of elements of the form $a+b \sqrt{-5}$, where a and b are integers. Let I be the ideal of R generated by 2 and $1+\sqrt{-5}$. We can write $I=(2,1+\sqrt{-5})$. Similarly, let $J=(3,2-\sqrt{-5})$.
(a) (3 points) Prove that I is not a principal ideal.

Remark: it is also true that J is not principal, but you are not required to show that.
(b) (3 points) Prove that $I J=(1+\sqrt{-5})$. In particular, $I J$ is principal.

