- You may use the text (Dummit and Foote).
- You may not use class notes and/or any notes and study guides you have created.
- You may not use a calculator, a cell phone or computer.
- You may quote results that are proved in the book. When you do, state precisely the result that you are using, or give a precise pointer to the book.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

1. Let $H \subset S_{4}$ be the subgroup generated by $(1,3)$ and $(1,2,3,4)$.
(a) (2 points) List the elements of H.

Solution: Let C_{2} and C_{4} be the subgroup of S_{4} generated by (1,3) and (1,2,3,4). Clearly $C_{2} C_{4} \subset H$. On the other hand, we claim that $C_{2} C_{4}$ is a subgroup (rather than just a subset) of S_{4}. To prove this, it is enough to check that C_{2} normalizes C_{4}, and for this it is enough to check that $(1,3)(1,2,3,4)(1,3)^{-1} \in C_{4}$. By a direct calculation

$$
(1,3)(1,2,3,4)(1,3)^{-1}=(1,3)(1,2,3,4)(1,3)=(1,4,3,2)=(1,2,3,4)^{-1} \in C_{4}
$$

Since $C_{2} C_{4}$ is a subgroup of S_{4} it follows that $C_{2} C_{4}=H$. So the elements of H are all the possible products of the form $x y$, where $x \in C_{2}$ and $y \in C_{4}$. Explicitly, the elements are the following:

$$
e,(1,2,3,4),(1,3)(2,4),(1,4,3,2),(1,3),(1,2)(3,4),(2,4),(1,4)(2,3)
$$

Remark: H is a 2-Sylow subgroup of S_{4}.
(b) (2 points) Is H a normal subgroup of S_{4} ?

Solution: No. A 2-Sylow subgroup of S_{4} is not normal. We can verify this concretely by taking the element $(1,3) \in H$ and conjugating it by $(1,2)$. By a direct calculation

$$
(1,2)(1,3)(1,2)^{-1}=(1,2)(1,3)(1,2)=(2,3) \notin H
$$

2. Let G be a group with the property that for every $x \in G, x^{2}=e$
(a) (2 points) Prove that G is abelian.

Solution: Let $x, y \in G$. We want to prove that $x y=y x$. By assumption $x y x y=e$. Let us multiply both sides of this equality on the right by $y x$. We obtain the equality $x y x y y x=y x$. Using that $y^{2}=e$ and then that $x^{2}=e$ we get that the left hand side of this equality is the same as $x y$. We have proved that $x y=y x$.
(b) (2 points) Suppose that G is also finite. Prove that the number of elements of G is a power of 2 .
Solution: Let $|G|$ be the number of elements of G. Suppose $|G|$ is not a power of 2 . Then there exists an odd prime p such that p divides $|G|$. By Cauchy's theorem, G has
an element of order p, contradicting the assumption that every non-identity element of G has order 2.
3. Suppose G is a group acting on a set X. Recall that the action is said to be

- transitive if for all $u, v \in X$, there exists a $g \in G$ such that $g u=v$.
- free if for all $g \in G \backslash\{e\}$ and all $x \in X, g x \neq x$.

Suppose K and H are subgroups of G. Let G / H denote the set of left cosets of H. Then K acts on G / H by the formula $k \cdot(g H)=(k g) H$. This is the restriction of the standard action of G on G / H.
(a) (2 points) Prove that the action of K on G / H is transitive if and only if $K H=G$.

Solution: Suppose that the action of K on G / H is transitive. Then for every element $g \in G$ there exists an element $k \in K$ such that $k(e H)=k H=g H$. This means that $k^{-1} g \in H$, so $k^{-1} g=h$ for some $h \in H$. In other words, $g=k h$. We have shown that for every $g \in G$ we can find elements $k \in K$ and $h \in H$ such that $g=k h$. This means precisely that $G=K H$.
Conversely suppose that $G=K H$. We want to prove that the action of K on G / H is transitive. This means that we want to show that for every $g_{1}, g_{2} \in G$ there exists an element $k \in K$ such that $g_{2} H=k g_{1} H$. Equivalently, we want to show that for every $g_{1}, g_{2} \in G$ there exists an element $k \in K$ such that $g_{2}^{-1} k g_{1} \in H$. Since $G=K H$, we can write $g_{1}=k_{1} h_{1}$ and $g_{2}=k_{2} h_{2}$ for some $k_{1}, k_{2} \in K, h_{1}, h_{2} \in H$. Let $k=k_{2} k_{1}^{-1}$. Then

$$
g_{2}^{-1} k g_{1}=h_{2}^{-1} k_{2}^{-1} k_{2} k_{1}^{-1} k_{1} h_{1}=h_{2}^{-1} h_{1} \in H .
$$

(b) (2 points) For which values of n is the action of A_{n} on S_{n} / C_{n} transitive? Here A_{n} denotes the alternating group, and C_{n} is the cyclic subgroup of S_{n} generated by the cycle $(1,2, \ldots, n)$.
Solution: By part (a), the action is transitive if and only if $S_{n}=A_{n} C_{n}$. This is equivalent to the condition $\left|S_{n}\right|=\left|A_{n} C_{n}\right|$. Recall that

$$
\left|A_{n} C_{n}\right|=\frac{\left|A_{n}\right|\left|C_{n}\right|}{\left|A_{n} \cap C_{n}\right|}=\frac{\frac{n!}{2} n}{\left|A_{n} \cap C_{n}\right|} .
$$

We have obtained the condition that the action is transitive if and only if

$$
n!=\frac{\frac{n!}{2} n}{\left|A_{n} \cap C_{n}\right|}
$$

This is equivalent to the condition $\left|A_{n} \cap C_{n}\right|=\frac{n}{2}$, so the question becomes: for which n do we have this equality?
Recall that if n is odd, then the permutation $(1,2, \ldots, n)$ is even, and therefore every power of this permutation is even. This means that if n is odd then $C_{n} \subset A_{n}$, and therefore $\left|A_{n} \cap C_{n}\right|=n$ in this case.
On the other hand, if n is even then $(1,2, \ldots, n)$ is an odd permutation, but $(1,2, \ldots, n)^{2}$ is even. More generally $(1,2, \ldots, n)^{i}$ is an even permutation if and only if i is even. So in this case half of the elements of C_{n} are even, and thus $\left|A_{n} \cap C_{n}\right|=\frac{n}{2}$ when n is even.
Answer: the action is transitive if and only if n is even.
(c) (3 points) Let p and q be distinct primes. Suppose that P and Q are a p-subgroup and a q-subgroup of G respectively. Prove that the action of P on G / Q is free.
Solution: Let $x \in P$ be a non-identity element. We want to prove that for every $g \in G$, $x g Q \neq g Q$. This is equivalent to showing that for every $g \in G g^{-1} x g \notin Q$. But $x \in P$, so x is an element whose order is a power of p (and is greater than 1 , since x is not the identity). For all $g \in G$, the element $g^{-1} x g$ has the same order as x, so it is a power of p. But every element of Q has order that is a power of q, and a non-zero power of p can not be a power of q. So $g^{-1} x g$ can not be an element of Q.
4. (a) (3 points) Prove that a group with 132 elements can not be simple.

Solution: Let us start with the observation that $132=2^{2} \cdot 3 \cdot 11$. Let G be a group with 132 elements. As usual, let n_{p} denote the number of p-Sylow subgroups of G. We know that $n_{11} \equiv 1(\bmod 11)$ and $n_{11} \mid 12$. It follows that $n_{11}=1$ or 12 . If $n_{11}=1$ then G has a normal 11-Sylow subgroup, is not simple, and we are done. Suppose $n_{11}=12$. Then G has 120 elements of order 11. Let us consider n_{3}. By the Sylow theorem, $n_{3} \mid 44$ and $n_{3} \equiv 1(\bmod 3)$. The possibilities are $n_{3}=1,4$ or 22 . If $n_{3}=1$ then G is not simple. If $n_{3}=22$ then G has 44 elements of order 3, which together with 120 elements of order 11 gives more than 132 elements, a contradiction. If $n_{3}=4$ then G has 8 elements of order 3 , so it has 128 elements of order either 3 or 11. This leaves at most 4 elements belonging to a 2-Sylow subgroup which means that $n_{2}=1$ and G is not simple.
To summarize: We have shown that at least one of n_{11}, n_{3}, n_{2} is 1 , so G is not simple.
(b) (3 points) Prove that a group with 216 elements can not be simple.

Solution: Let G be an group with 216 elements. Observe that $216=2^{3} \cdot 3^{3}$. Applying Sylow theorems, we find that $n_{3}=1$ or 4 . If $n_{3}=1, G$ is not simple and we are done. Suppose $n_{3}=4$. Then the action of G on the set of 3 -Sylow subgroups by conjugation induces a non-trivial homomorphism $G \rightarrow S_{4}$. Since the homomorphism is non-trivial, the kernel is a proper normal subgroup of G. Since $\left|S_{4}\right|=24<216$, the homomorphism is not injective and the kernel is non-trivial. We have shown that if $n_{3}=4$ then G has a proper, non-trivial normal subgroup of G, and G is not simple.
5. (3 points) Find all the maximal ideals of the ring $\mathbb{Z} \times \mathbb{Z}$.

Hint: show that every ideal of $\mathbb{Z} \times \mathbb{Z}$ is of the from $I \times J$, where I and J are ideals of \mathbb{Z}.
Solution: Let us first do the hint. Suppose A is an ideal of $\mathbb{Z} \times \mathbb{Z}$. Let

$$
I=\{x \in \mathbb{Z} \mid \exists y \in \mathbb{Z},(x, y) \in A\} .
$$

Similarly define $J=\{y \in \mathbb{Z} \mid \exists x \in \mathbb{Z},(x, y) \in A\}$.
First of all I claim that I and J are ideals of \mathbb{Z}. Let's prove that I is an ideal. Suppose $x_{1}, x_{2} \in I$. This means that there exists integers y_{1}, y_{2} such that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A$. But then, since A is an ideal of $\mathbb{Z} \times \mathbb{Z}$, we have that $\left(x_{1}, 0\right)=\left(x_{1}, y_{1}\right)(1,0) \in A$. Similarly $\left(x_{2}, 0\right) \in A$. But then $\left(x_{1}, 0\right)+\left(x_{2}, 0\right) \in A$, which implies that $x_{1}+x_{2} \in I$. We have proved that I is closed under addition. Similarly, for any $a \in \mathbb{Z},\left(a x_{1}, 0\right) \in A$, so $a x_{1} \in I$. We have proved that I is an ideal. In the same way one proves that J is an ideal.
Next, I claim that $A=I \times J$. Suppose $(x, y) \in A$. Then by definition $x \in I, y \in J$, and $(x, y) \in I \times J$, so $A \subset I \times J$. On the other hand, if $x \in I$ and $y \in J$, we have seen that $(x, 0) \in A$, and similarly $(0, y) \in A$, so $(x, y)=(x, 0)+(0, y) \in A$. We have shown that $I \times J \subset A$, so $A=I \times J$.

We know that every ideal of \mathbb{Z} is principal, and it has the form (m), where we can assume that $m \geq 0$, since $(m)=(-m)$. It follows that every ideal of $\mathbb{Z} \times \mathbb{Z}$ has the form $(m) \times(n)$ for some non-negative integers m, n.
The question is, which of these ideals are maximal? An ideal in a commutative ring is maximal if and only if the quotient of the ring by the ideal is a field. Now the quotient ring $\mathbb{Z} \times \mathbb{Z} /(m) \times(n)$ is isomorphic to $\mathbb{Z} / m \times \mathbb{Z} / n$. This is a field if and only if one of the numbers m, n is 1 , and the other one is a prime. I leave this step as an exercise to you. It follows that the maximal ideals of $\mathbb{Z} \times \mathbb{Z}$ are ideals of the form $(1) \times(p)$ and $(p) \times(1)$, where p is a prime number.
Perhaps some will like a more explicit description of the following form. Let p be a prime number. The set of pairs (x, y) where x is divisible by p is a maximal ideal. So is the set of pairs where y is divisible by p. Every maximal ideal of $\mathbb{Z} \times \mathbb{Z}$ is one of these ideals for some prime p.
6. Let $R=\mathbb{Z}[\sqrt{-5}]$ be the subring of \mathbb{C} consisting of elements of the form $a+b \sqrt{-5}$, where a and b are integers. Let I be the ideal of R generated by 2 and $1+\sqrt{-5}$. We can write $I=(2,1+\sqrt{-5})$. Similarly, let $J=(3,2-\sqrt{-5})$.
(a) (3 points) Prove that I is not a principal ideal.

Remark: it is also true that J is not principal, but you are not required to show that.
Solution: For every element $a+b \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$, let us define $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$. The number $N(a+b \sqrt{-5})$ is always an integer. Furthermore, since it is just the square of the usual norm of a complex number, it satisfies

$$
N((a+b \sqrt{-5}) \cdot(c+d \sqrt{-5}))=N(a+b \sqrt{-5}) \cdot N(c+d \sqrt{-5}) .
$$

It follows that if $a+b \sqrt{-5}$ divides $c+d \sqrt{-5}$ in $\mathbb{Z}[\sqrt{-5}]$ then $N(a+b \sqrt{-5})$ divides $N(c+d \sqrt{-5})$ in \mathbb{Z}.
We want to show that I is not principal. Suppose by contradiction that I is principal and is generated by $a+b \sqrt{-5}$. Then $a+b \sqrt{-5}$ divides 2 and $1+\sqrt{-5}$. It follows that $N(a+b \sqrt{-5})$ divides $N(2)=4$ and $N(1+\sqrt{-5})=6$. It follows that $N(a+b \sqrt{-5})$ divides 2 , so $N(a+b \sqrt{-5})=1$ or 2 .
It is easy to show that there do not exists integers a and b for which $a^{2}+5 b^{2}=2$. So $a^{2}+5 b^{2}=1$, which is only possible if $a= \pm 1$ and $b=0$. It follows that if I is principal then $I=(1)$ is the entire ring. But I is not the entire ring: it is easy to show that if $a+b \sqrt{-5} \in I$ then $a \equiv b(\bmod 2)$. So I is not principal.
(b) (3 points) Prove that $I J=(1+\sqrt{-5})$. In particular, $I J$ is principal.

Solution: By definition, I is the ideal generated by 2 and $1+\sqrt{-5}$, and J is the ideal generated by 3 and $2-\sqrt{-5}$. It follows that $I J$ is the ideal generated by the four elements

$$
6,4-2 \sqrt{-5}, 3+3 \sqrt{-5}, 7+\sqrt{-5}
$$

We have to check that the ideal generated by these four elements is exactly the ideal generated by the single element $1+\sqrt{-5}$. For one direction, we note that

$$
1+\sqrt{-5}=(7+\sqrt{-5})-6
$$

which implies that $(1+\sqrt{-5}) \subset I J$. For the other direction, we need to check that each one of the elements $6,4-2 \sqrt{-5}, 3+3 \sqrt{-5}, 7+\sqrt{-5}$ is divisible by $1+\sqrt{-5}$. Using division
of complex numbers, or just trial and error, one finds that $6=(1+\sqrt{-5})(1-\sqrt{-5})$, $4-2 \sqrt{-5}=(1+\sqrt{-5})(-1-\sqrt{-5}), 3+3 \sqrt{-5}=3(1+\sqrt{-5})$ and $7+\sqrt{-5}=(1+$ $\sqrt{-5})(2-\sqrt{-5})$. These equalities prove that $I J \subset(1+\sqrt{-5})$, and we are done.

