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• You may use the text (Dummit and Foote).

• You may not use class notes and/or any notes and study guides you have created.

• You may not use a calculator, a cell phone or computer.

• You may quote results that are proved in the book. When you do, state precisely the result
that you are using, or give a precise pointer to the book.

• Be sure to justify your answers, and show clearly all steps of your solutions.

• In problems with multiple parts, results of earlier parts can be used in the solution of later
parts, even if you do not solve the earlier parts

1. Let H ⊂ S4 be the subgroup generated by (1, 3) and (1, 2, 3, 4).

(a) (2 points) List the elements of H.

Solution: Let C2 and C4 be the subgroup of S4 generated by (1, 3) and (1, 2, 3, 4). Clearly
C2C4 ⊂ H. On the other hand, we claim that C2C4 is a subgroup (rather than just a
subset) of S4. To prove this, it is enough to check that C2 normalizes C4, and for this it
is enough to check that (1, 3)(1, 2, 3, 4)(1, 3)−1 ∈ C4. By a direct calculation

(1, 3)(1, 2, 3, 4)(1, 3)−1 = (1, 3)(1, 2, 3, 4)(1, 3) = (1, 4, 3, 2) = (1, 2, 3, 4)−1 ∈ C4.

Since C2C4 is a subgroup of S4 it follows that C2C4 = H. So the elements of H are all
the possible products of the form xy, where x ∈ C2 and y ∈ C4. Explicitly, the elements
are the following:

e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (1, 3), (1, 2)(3, 4), (2, 4), (1, 4)(2, 3)

Remark: H is a 2-Sylow subgroup of S4.

(b) (2 points) Is H a normal subgroup of S4?

Solution: No. A 2-Sylow subgroup of S4 is not normal. We can verify this concretely by
taking the element (1, 3) ∈ H and conjugating it by (1, 2). By a direct calculation

(1, 2)(1, 3)(1, 2)−1 = (1, 2)(1, 3)(1, 2) = (2, 3) /∈ H.

2. Let G be a group with the property that for every x ∈ G, x2 = e

(a) (2 points) Prove that G is abelian.

Solution: Let x, y ∈ G. We want to prove that xy = yx. By assumption xyxy = e.
Let us multiply both sides of this equality on the right by yx. We obtain the equality
xyxyyx = yx. Using that y2 = e and then that x2 = e we get that the left hand side of
this equality is the same as xy. We have proved that xy = yx.

(b) (2 points) Suppose that G is also finite. Prove that the number of elements of G is a
power of 2.

Solution: Let |G| be the number of elements of G. Suppose |G| is not a power of 2.
Then there exists an odd prime p such that p divides |G|. By Cauchy’s theorem, G has
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an element of order p, contradicting the assumption that every non-identity element of G
has order 2.

3. Suppose G is a group acting on a set X. Recall that the action is said to be

• transitive if for all u, v ∈ X, there exists a g ∈ G such that gu = v.

• free if for all g ∈ G \ {e} and all x ∈ X, gx 6= x.

Suppose K and H are subgroups of G. Let G/H denote the set of left cosets of H. Then K
acts on G/H by the formula k · (gH) = (kg)H. This is the restriction of the standard action
of G on G/H.

(a) (2 points) Prove that the action of K on G/H is transitive if and only if KH = G.

Solution: Suppose that the action of K on G/H is transitive. Then for every element
g ∈ G there exists an element k ∈ K such that k(eH) = kH = gH. This means that
k−1g ∈ H, so k−1g = h for some h ∈ H. In other words, g = kh. We have shown that
for every g ∈ G we can find elements k ∈ K and h ∈ H such that g = kh. This means
precisely that G = KH.

Conversely suppose that G = KH. We want to prove that the action of K on G/H is
transitive. This means that we want to show that for every g1, g2 ∈ G there exists an
element k ∈ K such that g2H = kg1H. Equivalently, we want to show that for every
g1, g2 ∈ G there exists an element k ∈ K such that g−1

2 kg1 ∈ H. Since G = KH, we can
write g1 = k1h1 and g2 = k2h2 for some k1, k2 ∈ K, h1, h2 ∈ H. Let k = k2k

−1
1 . Then

g−1
2 kg1 = h−1

2 k−1
2 k2k

−1
1 k1h1 = h−1

2 h1 ∈ H.

(b) (2 points) For which values of n is the action of An on Sn/Cn transitive? Here An de-
notes the alternating group, and Cn is the cyclic subgroup of Sn generated by the cycle
(1, 2, ..., n).

Solution: By part (a), the action is transitive if and only if Sn = AnCn. This is equivalent
to the condition |Sn| = |AnCn|. Recall that

|AnCn| =
|An||Cn|
|An ∩ Cn|

=
n!
2 n

|An ∩ Cn|
.

We have obtained the condition that the action is transitive if and only if

n! =
n!
2 n

|An ∩ Cn|
.

This is equivalent to the condition |An ∩ Cn| = n
2 , so the question becomes: for which n

do we have this equality?

Recall that if n is odd, then the permutation (1, 2, . . . , n) is even, and therefore every power
of this permutation is even. This means that if n is odd then Cn ⊂ An, and therefore
|An ∩ Cn| = n in this case.

On the other hand, if n is even then (1, 2, . . . , n) is an odd permutation, but (1, 2, . . . , n)2

is even. More generally (1, 2, . . . , n)i is an even permutation if and only if i is even. So in
this case half of the elements of Cn are even, and thus |An ∩ Cn| = n

2 when n is even.

Answer: the action is transitive if and only if n is even .
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(c) (3 points) Let p and q be distinct primes. Suppose that P and Q are a p-subgroup and a
q-subgroup of G respectively. Prove that the action of P on G/Q is free.

Solution: Let x ∈ P be a non-identity element. We want to prove that for every g ∈ G,
xgQ 6= gQ. This is equivalent to showing that for every g ∈ G g−1xg /∈ Q. But x ∈ P ,
so x is an element whose order is a power of p (and is greater than 1, since x is not the
identity). For all g ∈ G, the element g−1xg has the same order as x, so it is a power of p.
But every element of Q has order that is a power of q, and a non-zero power of p can not
be a power of q. So g−1xg can not be an element of Q.

4. (a) (3 points) Prove that a group with 132 elements can not be simple.

Solution: Let us start with the observation that 132 = 22 · 3 · 11. Let G be a group with
132 elements. As usual, let np denote the number of p-Sylow subgroups of G. We know
that n11 ≡ 1 (mod 11) and n11|12. It follows that n11 = 1 or 12. If n11 = 1 then G has
a normal 11-Sylow subgroup, is not simple, and we are done. Suppose n11 = 12. Then
G has 120 elements of order 11. Let us consider n3. By the Sylow theorem, n3|44 and
n3 ≡ 1 (mod 3). The possibilities are n3 = 1, 4 or 22. If n3 = 1 then G is not simple. If
n3 = 22 then G has 44 elements of order 3, which together with 120 elements of order 11
gives more than 132 elements, a contradiction. If n3 = 4 then G has 8 elements of order
3, so it has 128 elements of order either 3 or 11. This leaves at most 4 elements belonging
to a 2-Sylow subgroup which means that n2 = 1 and G is not simple.

To summarize: We have shown that at least one of n11, n3, n2 is 1, so G is not simple.

(b) (3 points) Prove that a group with 216 elements can not be simple.

Solution: Let G be an group with 216 elements. Observe that 216 = 23 · 33. Applying
Sylow theorems, we find that n3 = 1 or 4. If n3 = 1, G is not simple and we are done.
Suppose n3 = 4. Then the action of G on the set of 3-Sylow subgroups by conjugation
induces a non-trivial homomorphism G → S4. Since the homomorphism is non-trivial,
the kernel is a proper normal subgroup of G. Since |S4| = 24 < 216, the homomorphism
is not injective and the kernel is non-trivial. We have shown that if n3 = 4 then G has a
proper, non-trivial normal subgroup of G, and G is not simple.

5. (3 points) Find all the maximal ideals of the ring Z× Z.

Hint: show that every ideal of Z× Z is of the from I × J , where I and J are ideals of Z.

Solution: Let us first do the hint. Suppose A is an ideal of Z× Z. Let

I = {x ∈ Z | ∃y ∈ Z, (x, y) ∈ A}.

Similarly define J = {y ∈ Z | ∃x ∈ Z, (x, y) ∈ A}.
First of all I claim that I and J are ideals of Z. Let’s prove that I is an ideal. Suppose x1, x2 ∈ I.
This means that there exists integers y1, y2 such that (x1, y1), (x2, y2) ∈ A. But then, since A
is an ideal of Z× Z, we have that (x1, 0) = (x1, y1)(1, 0) ∈ A. Similarly (x2, 0) ∈ A. But then
(x1, 0) + (x2, 0) ∈ A, which implies that x1 + x2 ∈ I. We have proved that I is closed under
addition. Similarly, for any a ∈ Z, (ax1, 0) ∈ A, so ax1 ∈ I. We have proved that I is an ideal.
In the same way one proves that J is an ideal.

Next, I claim that A = I × J . Suppose (x, y) ∈ A. Then by definition x ∈ I, y ∈ J , and
(x, y) ∈ I × J , so A ⊂ I × J . On the other hand, if x ∈ I and y ∈ J , we have seen that
(x, 0) ∈ A, and similarly (0, y) ∈ A, so (x, y) = (x, 0) + (0, y) ∈ A. We have shown that
I × J ⊂ A, so A = I × J .
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We know that every ideal of Z is principal, and it has the form (m), where we can assume that
m ≥ 0, since (m) = (−m). It follows that every ideal of Z×Z has the form (m)× (n) for some
non-negative integers m,n.

The question is, which of these ideals are maximal? An ideal in a commutative ring is maximal
if and only if the quotient of the ring by the ideal is a field. Now the quotient ring Z×Z/(m)×(n)
is isomorphic to Z/m×Z/n. This is a field if and only if one of the numbers m,n is 1, and the
other one is a prime. I leave this step as an exercise to you. It follows that the maximal ideals
of Z× Z are ideals of the form (1)× (p) and (p)× (1), where p is a prime number.

Perhaps some will like a more explicit description of the following form. Let p be a prime
number. The set of pairs (x, y) where x is divisible by p is a maximal ideal. So is the set of
pairs where y is divisible by p. Every maximal ideal of Z × Z is one of these ideals for some
prime p.

6. Let R = Z[
√
−5] be the subring of C consisting of elements of the form a + b

√
−5, where

a and b are integers. Let I be the ideal of R generated by 2 and 1 +
√
−5. We can write

I = (2, 1 +
√
−5). Similarly, let J = (3, 2−

√
−5).

(a) (3 points) Prove that I is not a principal ideal.

Remark: it is also true that J is not principal, but you are not required to show that.

Solution: For every element a + b
√
−5 ∈ Z[

√
−5], let us define N(a + b

√
−5) = a2 + 5b2.

The number N(a + b
√
−5) is always an integer. Furthermore, since it is just the square

of the usual norm of a complex number, it satisfies

N((a + b
√
−5) · (c + d

√
−5)) = N(a + b

√
−5) ·N(c + d

√
−5).

It follows that if a + b
√
−5 divides c + d

√
−5 in Z[

√
−5] then N(a + b

√
−5) divides

N(c + d
√
−5) in Z.

We want to show that I is not principal. Suppose by contradiction that I is principal
and is generated by a + b

√
−5. Then a + b

√
−5 divides 2 and 1 +

√
−5. It follows that

N(a+ b
√
−5) divides N(2) = 4 and N(1+

√
−5) = 6. It follows that N(a+ b

√
−5) divides

2, so N(a + b
√
−5) = 1 or 2.

It is easy to show that there do not exists integers a and b for which a2 + 5b2 = 2. So
a2 + 5b2 = 1, which is only possible if a = ±1 and b = 0. It follows that if I is principal
then I = (1) is the entire ring. But I is not the entire ring: it is easy to show that if
a + b

√
−5 ∈ I then a ≡ b(mod 2). So I is not principal.

(b) (3 points) Prove that IJ = (1 +
√
−5). In particular, IJ is principal.

Solution: By definition, I is the ideal generated by 2 and 1 +
√
−5, and J is the ideal

generated by 3 and 2−
√
−5. It follows that IJ is the ideal generated by the four elements

6, 4− 2
√
−5, 3 + 3

√
−5, 7 +

√
−5.

We have to check that the ideal generated by these four elements is exactly the ideal
generated by the single element 1 +

√
−5. For one direction, we note that

1 +
√
−5 = (7 +

√
−5)− 6

which implies that (1+
√
−5) ⊂ IJ . For the other direction, we need to check that each one

of the elements 6, 4 − 2
√
−5, 3 + 3

√
−5, 7 +

√
−5 is divisible by 1 +

√
−5. Using division
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of complex numbers, or just trial and error, one finds that 6 = (1 +
√
−5)(1 −

√
−5),

4 − 2
√
−5 = (1 +

√
−5)(−1 −

√
−5), 3 + 3

√
−5 = 3(1 +

√
−5) and 7 +

√
−5 = (1 +√

−5)(2−
√
−5). These equalities prove that IJ ⊂ (1 +

√
−5), and we are done.


