Linear algebra and learning from data, Exam 2022-10-25
(1) (a) Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite show that $B^{t} A B>0$ if and only if the null space $\mathcal{N}(B)=\{0\}$, where $B \in \mathbb{R}^{n \times k}$.
(b) Let $\langle A, B\rangle=\operatorname{tr}\left(A^{t} B\right)$ for any $A, B \in \mathbb{R}^{n \times n}$. Show that this defines an inner product on the vector space $\mathbb{R}^{n \times n}$, and the Frobenius norm is the induced norm of this inner product.

Solution. (a) The matrix A is positive definite $\Leftrightarrow A=A^{1 / 2} A^{1 / 2}$ with $A^{1 / 2}$ symmetric and invertible. Note that $B^{t} A B>0 \Leftrightarrow x^{t} B^{t} A B x>0$, $\forall x \in \mathbb{R}^{n} \backslash\{0\} \Leftrightarrow\left(A^{1 / 2} B x\right)^{t}\left(A^{1 / 2} B x\right)>0 \Leftrightarrow\left\|A^{1 / 2} B x\right\|_{2}^{2}>0$. So the vector $A^{1 / 2} B x \neq 0$ which implies $B x \neq 0$, i.e. $\mathcal{N}(B)=\{0\}$, since x is an arbitrary nonzero vector. The converse follows by noting that $B^{t} A B \geq 0$ for all x. If it were not positive definite then $B x=0$, which is a contradiction.
(b) The linearity and commutativity are trivial. So we only show $\langle A, A\rangle=$ 0 only if $A=0$. Since $\operatorname{tr}\left(A^{t} A\right)$ is the sum of the eigenvalues of $A^{t} A, \lambda_{i}$, and the eigenvalues are non-negative, all the eigenvalues must be zero if their sum is zero. So A must be the zero matrix. It is apparent that $\|A\|_{F}^{2}=\sum_{i} \sigma_{i}^{2}=\sum_{i} \lambda_{i}=\langle A, A\rangle$.
(2) Let $A \in \mathbb{R}^{n \times n}$ and we define the induced matrix norm: $\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}$ where $\|\cdot\|$ is any vector norm in \mathbb{R}^{n}.
(a) Justify the well-definedness of this definition.
(b) Show that $\|A\|_{2}$, using the vector norm $\|\cdot\|_{2}$, is the largest singular value of A.
(c) Let $A=I$ be the $n \times n$ identity matrix. Determine $\|I\|_{2},\|I\|_{F}$ and $\|I\|_{N}$. Next let $A=Q$ be an orthogonal matrix. Determine $\|Q\|_{2}$, $\|Q\|_{F}$ and $\|Q\|_{N}$. As a reminder F and N stand for Frobenius and nuclear, respectively.
(d) Find the relations between these three norms for any square matrix A. Show also that $\|A\|_{F}=\|A\|_{2}$ if A is a rank 1 matrix.
(e) Define $\kappa=\|A\|\left\|A^{-1}\right\|$, the condition number that measures conditioning of the matrix A in solving $A x=b$. However, in the least square problems the matrix A is $m \times n$ and $m \geq n$. Modify the definition of $\kappa(A)$ using $\|\cdot\|_{2}$ which will be the same as defined before if $m=n$.
Solution. (a) It is well defined because $\|A\|=\max _{x \neq 0} \frac{1\|A x\|}{\|x\|}=\max _{\|x\|=1}\|A x\|$ and the norm is a continuous function, the maximum is taken on a compact set (a unit sphere).
(b) $\|A x\|_{2}^{2}=x^{t}\left(A^{t} A\right) x$ is a quadratic form the maximum is the largest eigenvalue of $A^{t} A$, and it is achieved at its associated eigenvector, i.e. $\|A\|_{2}$ is the largest singular value of A.
(c) $\|I\|_{2}=1,\|I\|_{F}=\sqrt{n},\|I\|_{N}=n$;
$\|I\|_{2}=\|Q\|_{2}=1,\|I\|_{F}=\|Q\|_{F}=\sqrt{n},\|I\|_{N}=\|I Q\|_{N}=n$.
(d) It is easy to show that $\|A\|_{2}^{2} \leq\|A\|_{F}^{2} \leq\|A\|_{N}^{2}$ (using the fact that the singular values are nonnegative). In fact we can show that these norms are equivalent: assuming r is the rank of A,

$$
\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{r} \|\left. A\right|_{2} \text { and }\|A\|_{F} \leq\|A\|_{N} \leq \sqrt{r} \|\left. A\right|_{F},
$$

meaning the 2 -norm is equivalent to the F-norm which is equivalent to the N-norm.
(e) For define $\kappa_{2}(A)=\frac{\max _{\|x\|_{2}=1}\|A x\|_{2}}{\min _{\|x\|_{2}=1}\|A x\|_{2}}$. By definition, if $m=n$ and A is invertible, we have

$$
\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\max _{\|x\|_{2}=1}\|A x\|_{2}
$$

and

$$
\left\|A^{-1}\right\|_{2}=\max _{x \neq 0} \frac{\left\|A^{-1} x\right\|_{2}}{\|x\|_{2}}=\frac{1}{\min _{\|y\|_{2}=1}\|A y\|_{2}}
$$

where $y=A^{-1} x$.
In fact $\kappa_{2}(A)=\frac{\sigma_{1}(A)}{\sigma_{n}(A)}$, i.e the ratio of the largest and the smallest sigular value of A. (Prove it!)
(3) Given the diagonal matrix $A=\operatorname{diag}(4,3,2,1)$. What is the best 2-rank approximation of A (in which sense)? State the general result for the approximation of any A with low rank. Give some application areas of this theorem.

Solution. The best 2-rank approximation is $A_{2}=\operatorname{diag}(4,3,0,0)$, by the Eckart-Young theorem. It is optimal in the sense that the 2 - and the F norm of $A-B$ is minimized over all the matrices B that have a given lower rank than the rank of A.
(4) (a) Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x)=x^{t} A x$ where $A=\left(\begin{array}{lll}2 & 2 & 3 \\ 1 & 3 & 1 \\ 1 & 2 & \theta\end{array}\right)$. Find the Hessian of $f H$ without computing the partial derivatives. For what values of θ is f strictly convex?
(b) Argue that the matrix H can be written as a sum of rank one matrices.
(c) What is the smallest eigenvalue of H, without computing, if $\theta=2$?

Solution. (a) The Hessian matrix H is $\frac{1}{2}\left(A+A^{t}\right)=\frac{1}{2}\left(\begin{array}{llc}4 & 3 & 4 \\ 3 & 6 & 3 \\ 4 & 3 & 2 \theta\end{array}\right)$. It is positive definite if $\theta>2$ using the determinant test. Then f is strictly convex.
(b) Since H is symmetric we have, by the spectral theorem, $H=Q \Lambda Q^{t}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \lambda_{i}, i=1, \ldots, n$ are eigenvalues of H and $Q=$ $\left(q_{1}, \ldots, q_{n}\right)$ is an orthogonal matrix with $H q_{i}=\lambda_{i} q_{i}$. That is $H=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{t}$.
(c) The smallest eigenvalue of H is 0 if $\theta=2$ because H is positive semi-definite.
(5) Let $A=\left(\begin{array}{ll}B & b \\ b^{t} & a\end{array}\right) \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{(n-1) \times(n-1)}$ be symmetric and $b \in$ \mathbb{R}^{n-1}. Assume that A has eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and B has eigenvalues $\mu_{1} \leq \cdots \leq \mu_{n-1}$. Show that

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \mu_{2} \leq \cdots \leq \mu_{n-1} \leq \lambda_{n}
$$

Solution.. There are many ways to prove it. We give one here. We prove (i) $\lambda_{k} \leq \mu_{k}$ (ii) $\lambda_{k+1} \geq \mu_{k}$ for $k=1, \ldots, n-1$.
$" \lambda_{k} \leq \mu_{k}$ ": Let x_{1}, \ldots, x_{n} be eigenvectors of A and y_{1}, \ldots, y_{n-1} be eigenvectors of B. Define the following subspaces

$$
V=\operatorname{span}\left\{x_{k}, \ldots, x_{n}\right\}, W=\operatorname{span}\left\{y_{1}, . ., y_{k}\right\}, U=\left\{\binom{w}{0} \in \mathbb{R}^{n}: w \in W\right\}
$$

Since $\operatorname{dim} V=n-k+1$ and $\operatorname{dim} U=\operatorname{dim} W=k$, there is $u \in V \cap U$ and $u=\binom{w}{0}$ for some $w \in W$. Obviously $u^{t} A u=w^{t} B w$. Recall that

$$
\lambda_{k}=\min _{x \in V} \frac{x^{t} A x}{x^{t} x} \text { and } \mu_{k}=\max _{x \in W} \frac{x^{t} B x}{x^{t} x}
$$

which yields

$$
\mu_{k}=\max _{x \in W} \frac{x^{t} x B x}{x^{t} x} \Rightarrow \lambda_{k} \leq \frac{u^{t} A u}{u^{t} u}=\frac{w^{t} B w}{w^{t} w} \leq \mu_{k}
$$

$" \lambda_{k+1} \geq \mu_{k}$ ": Similarly we define the subspaces
$V=\operatorname{span}\left\{x_{1}, \ldots, x_{k+1}\right\}, W=\operatorname{span}\left\{y_{k}, . ., y_{n-1}\right\}, U=\left\{\binom{w}{0} \in \mathbb{R}^{n}: w \in W\right\}$.
Then $\operatorname{dim} V=k+1$ and $\operatorname{dim} U=\operatorname{dim} W=n-k$, there is $u \in V \cap U$ and $u=\binom{w}{0}$ for some $w \in W$. Obviously $u^{t} A u=w^{t} B w$. Then

$$
\lambda_{k+1}=\max _{x \in V} \frac{x^{t} A x}{x^{t} x} \geq \frac{u^{t} A u}{u^{t} u}=\frac{w^{t} B w}{w^{t} w} \geq \min _{x \in W} \frac{x^{t} B x}{x^{t} x}=\mu_{k}
$$

(6) Fisher's LDA attempts to find a separation vector onto which the projection of different classes are "best separated" by solving the optimization problem $\max _{\|v\| \neq 0} \frac{\left(v^{t} m_{A}-v^{t} m_{B}\right)^{2}}{v^{t}\left(\Sigma_{A}+\Sigma_{B}\right) v}$ where m_{C}, Σ_{C} are sampled mean and covariance matrices for $C \in\{A, B\}$ the two classes. Find an optimal solution. Argue how you will deal with the situation where $\Sigma_{A}+\Sigma_{B}$ is not positive definite or this matrix is nearly singular.

Solution. See Lecture notes Day 4.
(7) (a) Given two n-vectors a and x, define their circular convolution $y=a * x$ as $y_{y}=\sum_{l=0}^{n-1} a_{k-l} x_{l}$, where the indices in the sum are evaluated modulo n. Show that the circular convolution is commutative and associative.
(b) Assume that the matrix A has simple eigenvalues. Show that A and B are simultaneously diagonalizable if and only if they commute. In this case the diagonalizing basis is made up of the eigenvectors of A.
(c) Let S and its adjoint S^{*} be the circular shift operators defined by $S\left(x_{0},,,,, x_{n-1}, x_{n}\right)=\left(x_{n-1}, x_{0}, \ldots, x_{n-2}\right)$ and $S^{*}\left(x_{0},,,,, x_{n-1}, x_{n}\right)=$ $\left(x_{1},, \ldots, x_{n-1}, x_{0}\right)$, respectively. Show that any matrix M that commutes with the circular shift operator S must be a circulant matrix.
(d) Find all eigenvalues of S^{*} and their corresponding eigenvectors. Justify that the operator S^{*} on \mathbb{R}^{n} has n distinct eigenvalues.
(e) Show that any circulant matrix C has the same eigenvectors as those of S^{*}.

Solution. See lecturenotes Day 10.
(8) Let $A \in \mathbb{R}^{m \times n}$ with $m>n$. Consider the equation $A x=b$.
(a) Show how you derive a solution if $A^{t} A$ is not invertible.
(b) Describe the gradient descent method for solving the least square problem min $\|b-A x\|_{2}^{2}$ assuming A has full column rank.
(c) Find the conditions for the convergence of this method and derive the convergence rate.
Solution. See lecturenotes Day 6 and Day 7.
(9) How do you solve the real polynomial equation $p(s)=s^{n}+p_{n-1} s^{n-1}+$ $\cdots+p_{1} s+p_{0}$ using linear algebra?

Solution. Note that $p(s)$ is the characteristic polynmial of the companion matrix

$$
C=\left(\begin{array}{cccc}
0 & \cdots & 0 & -p_{0} \\
1 & \cdots & 0 & -p_{1} \\
\vdots & \ddots & 0 & \vdots \\
0 & \cdots & 1 & -p_{n-1}
\end{array}\right)
$$

(show it!) Then we can use the two-step QR algorithm, i.e. first we convert the matrix to an upper Hessenberg form then apply the QR algorithm, to find the eigenvalues of C. A more efficient way is to split C as $C=Q+u v^{t}$ where Q is the circular shift matrix and $u^{t}=\left(-p_{0}-1,-p_{1}, \ldots,-p_{n-1}\right)$ and $v^{t}=e_{n}=(0, \ldots, 0,1)$. Now we can apply the fast QR algorithm for the rank-1 update.

Note that the main problem of using iterative method to solve polynomial equations is when the polynomials have multiple zeros. This is nevertheless not a problem for eigenvalue problems.

