
Linear algebra and learning from data, Exam 2022-10-25

(1) (a) Let A ∈ Rn×n be symmetric positive definite show that BtAB > 0 if
and only if the null space N (B) = {0}, where B ∈ Rn×k.

(b) Let 〈A,B〉 = tr(AtB) for any A,B ∈ Rn×n. Show that this defines an
inner product on the vector space Rn×n, and the Frobenius norm is
the induced norm of this inner product.

Solution. (a) The matrix A is positive definite ⇔ A = A1/2A1/2 with
A1/2 symmetric and invertible. Note that BtAB > 0 ⇔ xtBtABx > 0,
∀x ∈ Rn \{0} ⇔ (A1/2Bx)t(A1/2Bx) > 0⇔ ‖A1/2Bx‖22 > 0. So the vector
A1/2Bx 6= 0 which implies Bx 6= 0, i.e. N (B) = {0}, since x is an arbitrary
nonzero vector. The converse follows by noting that BtAB ≥ 0 for all x. If
it were not positive definite then Bx = 0, which is a contradiction.

(b) The linearity and commutativity are trivial. So we only show 〈A,A〉 =
0 only if A = 0. Since tr(AtA) is the sum of the eigenvalues of AtA, λi,
and the eigenvalues are non-negative, all the eigenvalues must be zero if
their sum is zero. So A must be the zero matrix. It is apparent that
‖A‖2F =

∑
i σ

2
i =

∑
i λi = 〈A,A〉.

(2) LetA ∈ Rn×n and we define the induced matrix norm: ‖A‖ = maxx 6=0
|‖Ax‖
‖x‖

where ‖ · ‖ is any vector norm in Rn.
(a) Justify the well-definedness of this definition.

(b) Show that ‖A‖2, using the vector norm ‖ · ‖2, is the largest singular
value of A.

(c) Let A = I be the n × n identity matrix. Determine ‖I‖2, ‖I‖F and
‖I‖N . Next let A = Q be an orthogonal matrix. Determine ‖Q‖2,
‖Q‖F and ‖Q‖N . As a reminder F and N stand for Frobenius and
nuclear, respectively.

(d) Find the relations between these three norms for any square matrix
A. Show also that ‖A‖F = ‖A‖2 if A is a rank 1 matrix.

(e) Define κ = ‖A‖‖A−1‖, the condition number that measures condition-
ing of the matrix A in solving Ax = b. However, in the least square
problems the matrix A is m× n and m ≥ n. Modify the definition of
κ(A) using ‖ · ‖2 which will be the same as defined before if m = n.

Solution. (a) It is well defined because ‖A‖ = maxx 6=0
|‖Ax‖
‖x‖ = max‖x‖=1 ‖Ax‖

and the norm is a continuous function, the maximum is taken on a compact
set (a unit sphere).

(b) ‖Ax‖22 = xt(AtA)x is a quadratic form the maximum is the largest
eigenvalue of AtA, and it is achieved at its associated eigenvector, i.e. ‖A‖2
is the largest singular value of A.

(c) ‖I‖2 = 1, ‖I‖F =
√
n, ‖I‖N = n;

‖I‖2 = ‖Q‖2 = 1, ‖I‖F = ‖Q‖F =
√
n, ‖I‖N = ‖IQ‖N = n.

(d) It is easy to show that ‖A‖22 ≤ ‖A‖2F ≤ ‖A‖2N (using the fact that
the singular values are nonnegative). In fact we can show that these norms
are equivalent: assuming r is the rank of A,

‖A‖2 ≤ ‖A‖F ≤
√
r‖A|2 and ‖A‖F ≤ ‖A‖N ≤

√
r‖A|F ,

meaning the 2-norm is equivalent to the F -norm which is equivalent to the
N -norm.
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(e) For define κ2(A) =
max‖x‖2=1 ‖Ax‖2
min‖x‖2=1 ‖Ax‖2

. By definition, if m = n and A is

invertible, we have

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2,

and

‖A−1‖2 = max
x 6=0

‖A−1x‖2
‖x‖2

=
1

min‖y‖2=1 ‖Ay‖2
,

where y = A−1x.

In fact κ2(A) = σ1(A)
σn(A) , i.e the ratio of the largest and the smallest sigular

value of A. (Prove it!)

(3) Given the diagonal matrix A = diag(4, 3, 2, 1). What is the best 2-rank
approximation of A (in which sense)? State the general result for the ap-
proximation of any A with low rank. Give some application areas of this
theorem.

Solution. The best 2-rank approximation is A2 = diag(4, 3, 0, 0), by the
Eckart-Young theorem. It is optimal in the sense that the 2- and the F -
norm of A−B is minimized over all the matrices B that have a given lower
rank than the rank of A.

(4) (a) Consider the function f : R3 → R given by f(x) = xtAx where

A =

(
2 2 3
1 3 1
1 2 θ

)
. Find the Hessian of f H without computing the

partial derivatives. For what values of θ is f strictly convex?

(b) Argue that the matrix H can be written as a sum of rank one matrices.
(c) What is the smallest eigenvalue of H, without computing, if θ = 2?

Solution. (a) The Hessian matrix H is 1
2 (A + At) = 1

2

(
4 3 4
3 6 3
4 3 2θ

)
. It

is positive definite if θ > 2 using the determinant test. Then f is strictly
convex.

(b) Since H is symmetric we have, by the spectral theorem, H = QΛQt,
where Λ = diag(λ1, ..., λn), λi, i = 1, ..., n are eigenvalues of H and Q =
(q1, ..., qn) is an orthogonal matrix withHqi = λiqi. That isH =

∑n
i=1 λiqiq

t
i .

(c) The smallest eigenvalue of H is 0 if θ = 2 because H is positive
semi-definite.

(5) Let A =

(
B b
bt a

)
∈ Rn×n and B ∈ R(n−1)×(n−1) be symmetric and b ∈

Rn−1. Assume that A has eigenvalues λ1 ≤ · · · ≤ λn and B has eigenvalues
µ1 ≤ · · · ≤ µn−1. Show that

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn
Solution.. There are many ways to prove it. We give one here. We prove

(i) λk ≤ µk (ii) λk+1 ≥ µk for k = 1, ..., n− 1.

”λk ≤ µk”: Let x1, ..., xn be eigenvectors of A and y1, ..., yn−1 be eigenvec-
tors of B. Define the following subspaces

V = span{xk, ..., xn},W = span{y1, .., yk}, U =
{(
w
0

)
∈ Rn : w ∈W

}
.
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Since dimV = n − k + 1 and dimU = dimW = k, there is u ∈ V ∩ U and

u =
(
w
0

)
for some w ∈W . Obviously utAu = wtBw. Recall that

λk = min
x∈V

xtAx

xtx
and µk = max

x∈W

xtBx

xtx

which yields

µk = max
x∈W

xtxBx

xtx
⇒ λk ≤

utAu

utu
=
wtBw

wtw
≤ µk.

”λk+1 ≥ µk ”: Similarly we define the subspaces

V = span{x1, ..., xk+1},W = span{yk, .., yn−1}, U =
{(
w
0

)
∈ Rn : w ∈W

}
.

Then dimV = k + 1 and dimU = dimW = n − k, there is u ∈ V ∩ U and

u =
(
w
0

)
for some w ∈W . Obviously utAu = wtBw. Then

λk+1 = max
x∈V

xtAx

xtx
≥ utAu

utu
=
wtBw

wtw
≥ min
x∈W

xtBx

xtx
= µk.

(6) Fisher’s LDA attempts to find a separation vector onto which the projec-
tion of different classes are ”best separated” by solving the optimization

problem max‖v‖6=0
(vtmA−vtmB)2

vt(ΣA+ΣB)v where mC ,ΣC are sampled mean and co-

variance matrices for C ∈ {A,B} the two classes. Find an optimal solution.
Argue how you will deal with the situation where ΣA + ΣB is not positive
definite or this matrix is nearly singular.

Solution. See Lecture notes Day 4.

(7) (a) Given two n-vectors a and x, define their circular convolution y = a∗x
as yy =

∑n−1
l=0 ak−lxl, where the indices in the sum are evaluated

modulo n. Show that the circular convolution is commutative and
associative.

(b) Assume that the matrix A has simple eigenvalues. Show that A and
B are simultaneously diagonalizable if and only if they commute. In
this case the diagonalizing basis is made up of the eigenvectors of A.

(c) Let S and its adjoint S∗ be the circular shift operators defined by
S(x0, , , , , xn−1, xn) = (xn−1, x0, ..., xn−2) and S∗(x0, , , , , xn−1, xn) =
(x1, , ..., xn−1, x0), respectively. Show that any matrix M that com-
mutes with the circular shift operator S must be a circulant matrix.

(d) Find all eigenvalues of S∗ and their corresponding eigenvectors. Justify
that the operator S∗ on Rn has n distinct eigenvalues.

(e) Show that any circulant matrix C has the same eigenvectors as those
of S∗.

Solution. See lecturenotes Day 10.

(8) Let A ∈ Rm×n with m > n. Consider the equation Ax = b.
(a) Show how you derive a solution if AtA is not invertible.
(b) Describe the gradient descent method for solving the least square prob-

lem min ‖b−Ax‖22 assuming A has full column rank.
(c) Find the conditions for the convergence of this method and derive the

convergence rate.
Solution. See lecturenotes Day 6 and Day 7.

(9) How do you solve the real polynomial equation p(s) = sn + pn−1s
n−1 +

· · ·+ p1s+ p0 using linear algebra?
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Solution. Note that p(s) is the characteristic polynmial of the companion
matrix

C =


0 · · · 0 −p0
1 · · · 0 −p1
...

. . . 0
...

0 · · · 1 −pn−1

 .

(show it!) Then we can use the two-step QR algorithm, i.e. first we convert
the matrix to an upper Hessenberg form then apply the QR algorithm, to
find the eigenvalues of C. A more efficient way is to split C as C = Q+uvt

where Q is the circular shift matrix and ut = (−p0− 1,−p1, ...,−pn−1) and
vt = en = (0, ..., 0, 1). Now we can apply the fast QR algorithm for the
rank-1 update.

Note that the main problem of using iterative method to solve poly-
nomial equations is when the polynomials have multiple zeros. This is
nevertheless not a problem for eigenvalue problems.
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