Linear algebra and learning from data, Fxam 2022-10-25

(1) (a) Let A € R™™™ be symmetric positive definite show that B'AB > 0 if
and only if the null space N'(B) = {0}, where B € R"**.

(b) Let (A, B) = tr(A'B) for any A, B € R"*™. Show that this defines an
inner product on the vector space R™*™, and the Frobenius norm is
the induced norm of this inner product.

Solution. (a) The matrix A is positive definite < A = AY/2AY? with
A'/2 symmetric and invertible. Note that B'AB > 0 < z'B*ABx > 0,
Vo € R*\ {0} & (AY?Bz)!(A/?Bz) > 0 < ||AY/2Bz||3 > 0. So the vector
A'Y2Bx # 0 which implies Bz # 0, i.e. N(B) = {0}, since z is an arbitrary
nonzero vector. The converse follows by noting that BtAB > 0 for all z. If
it were not positive definite then Bx = 0, which is a contradiction.

(b) The linearity and commutativity are trivial. So we only show (A4, A) =
0 only if A = 0. Since tr(A*A) is the sum of the eigenvalues of A*A, \;,
and the eigenvalues are non-negative, all the eigenvalues must be zero if
their sum is zero. So A must be the zero matrix. It is apparent that
IANE =30 07 = 32 X = (4, 4).

(2) Let A € R™*"™ and we define the induced matrix norm: ||A| = max,o ‘Illéﬁ‘l

where || - || is any vector norm in R™.
(a) Justify the well-definedness of this definition.

(b) Show that ||A|2, using the vector norm || - ||2, is the largest singular
value of A.

(c) Let A = I be the n x n identity matrix. Determine ||I||2, ||| and
]| Next let A = @ be an orthogonal matrix. Determine ||Q||2,
Q|7 and ||Q||x. As a reminder F' and N stand for Frobenius and
nuclear, respectively.

(d) Find the relations between these three norms for any square matrix
A. Show also that ||A||r = || A2 if A is a rank 1 matrix.

(e) Define k = ||A||[|[A~1]|, the condition number that measures condition-
ing of the matrix A in solving Az = b. However, in the least square
problems the matrix A is m x n and m > n. Modify the definition of

k(A) using || - ||z which will be the same as defined before if m = n.

Solution. (a) It is well defined because || A|| = max, ¢ ”mﬁ” = max||;|| =1 || Az||

and the norm is a continuous function, the maximum is taken on a compact
set (a unit sphere).

(b) |Az||3 = 2'(A*A)x is a quadratic form the maximum is the largest
eigenvalue of A'A, and it is achieved at its associated eigenvector, i.e. || A]|2
is the largest singular value of A.

(©) Ml =1, [l = v/n, [T|5 = n;

11l = 1Qll2 = 1, ]l = Q1L = v, [1]lx = Q|| = n.

(d) Tt is easy to show that [|A||3 < ||A||% < ||A||% (using the fact that
the singular values are nonnegative). In fact we can show that these norms
are equivalent: assuming r is the rank of A,

[All2 < [Allp < V7r[lAl2 and [|A]lp < [[Allx < V7| AlF,

meaning the 2-norm is equivalent to the F-norm which is equivalent to the
N-norm.
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max||, =1 || Az||2

(e) For define ko(A) =

invertible, we have

. By definition, if m = n and A is

ming|,=1 [[Az||2

A
|A]l2 = max 1Azl _ o | Az,
220 |zl2 =)=t
and
A1 1
Ay = mape 1Atz ,
a0 ||z[2 miny,=1 [[Ayll2

where y = A~ ta.

In fact ka(A) = 2 ((i)) , i.e the ratio of the largest and the smallest sigular

value of A. (Prove it!)

Given the diagonal matrix A = diag(4,3,2,1). What is the best 2-rank
approximation of A (in which sense)? State the general result for the ap-
proximation of any A with low rank. Give some application areas of this
theorem.

Solution. The best 2-rank approximation is Ay = diag(4, 3,0,0), by the
Eckart-Young theorem. It is optimal in the sense that the 2- and the F-
norm of A — B is minimized over all the matrices B that have a given lower
rank than the rank of A.

(a) Consider the function f : R* — R given by f(z) = 2'Az where

2 2 3
A=1(1 3 é . Find the Hessian of f H without computing the
1 2

partial derivatives. For what values of 6 is f strictly convex?

(b) Argue that the matrix H can be written as a sum of rank one matrices.
(¢) What is the smallest eigenvalue of H, without computing, if § = 27?

4 3 4
Solution. (a) The Hessian matrix H is (A + A") = 3 Z g 23(9 It

is positive definite if § > 2 using the determinant test. Then f is strictly
convex.

(b) Since H is symmetric we have, by the spectral theorem, H = QAQ?,
where A = diag(A1,..., \n), A, @ = 1,...,n are eigenvalues of H and @ =
(q1,-.-,qn) is an orthogonal matrix with Hg; = \;q;. Thatis H = Y1 | Nigiql.

(¢) The smallest eigenvalue of H is 0 if § = 2 because H is positive

semi-definite.

Let A = (5 2) € R™*" and B € R"~D*x("=1) he symmetric and b €

R"~!. Assume that A has eigenvalues A; < --- < \,, and B has eigenvalues
w1 <+ < p—1. Show that

M S S A Spp < S g1 S A,
Solution.. There are many ways to prove it. We give one here. We prove
(i) A < e (i) Aggr > pg for E=1,...,n — 1.

"M < pg”: Let xq, ..., z, be eigenvectors of A and v, ...,yn_1 be eigenvec-
tors of B. Define the following subspaces

V = span{xg, ..., zn }, W = span{y1, ..,yx },U = {(g) eER™:we W} .
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Since dimV =n — k 4+ 1 and dimU = dimW = k, there isu € V. NU and
u= (%}) for some w € W. Obviously u* Au = w! Bw. Recall that

. ztAx 2'Bx
Ak = min and g = max —;
zeV xtx zeW itz
which yields
xtxBx uwtAu  w!Bw
M = max =M< —— = —— < -
zeW atx uty wtw

"Ae+1 > pg 7: Similarly we define the subspaces

V =span{xy, ..., xx41}, W = span{yk, .., Yn—1},U = {(%) eER":we W} .
Then dimV = k + 1 and dimU = dimW = n — k, there is wu € VN U and
u= (%]) for some w € W. Obviously vt Au = w*Bw. Then

z'Ar  uwtAu  w'Buw . z'Bzx
Ak4+1 = mMax > = > min
zeV iz s wtw zeW zlx
(6) Fisher’s LDA attempts to find a separation vector onto which the projec-
tion of different classes are "best separated” by solving the optimization
roblem max (w'ma—v'mp)*

p [vlI#0 2t (s A+sg)0
variance matrices for C' € {4, B} the two classes. Find an optimal solution.
Argue how you will deal with the situation where ¥4 + ¥ p is not positive

definite or this matrix is nearly singular.

= Hk-

where m¢, X are sampled mean and co-

Solution. See Lecture notes Day 4.
(7) (a) Given two n-vectors a and x, define their circular convolution y = a*x

—1 . .
as Yy = Z?:o ai_;x;, where the indices in the sum are evaluated
modulo n. Show that the circular convolution is commutative and
associative.

(b) Assume that the matrix A has simple eigenvalues. Show that A and
B are simultaneously diagonalizable if and only if they commute. In
this case the diagonalizing basis is made up of the eigenvectors of A.

(c) Let S and its adjoint S* be the circular shift operators defined by
S(IO7 s Ln—1, l’n) = (xn—lv TQyeeey In_g) and S*(IOa sy n—1, 'Tn) -
(T1,, ..y Tn—1,x0), respectively. Show that any matrix M that com-
mutes with the circular shift operator S must be a circulant matrix.

(d) Find all eigenvalues of S* and their corresponding eigenvectors. Justify
that the operator S* on R™ has n distinct eigenvalues.

(e) Show that any circulant matrix C' has the same eigenvectors as those
of S*.

Solution. See lecturenotes Day 10.

(8) Let A € R™*™ with m > n. Consider the equation Az = b.
(a) Show how you derive a solution if A4 is not invertible.
(b) Describe the gradient descent method for solving the least square prob-
lem min [|b — Az||3 assuming A has full column rank.
(¢) Find the conditions for the convergence of this method and derive the
convergence rate.
Solution. See lecturenotes Day 6 and Day 7.

(9) How do you solve the real polynomial equation p(s) = s" + p,_15" ! +
---+p1S+ po using linear algebra?
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Solution. Note that p(s) is the characteristic polynmial of the companion

matrix
0 --- 0 —po
1 .- 0 —p1
cC=|. .
: 0 :
0 - 1 —pu

(show it!) Then we can use the two-step QR algorithm, i.e. first we convert
the matrix to an upper Hessenberg form then apply the QR algorithm, to
find the eigenvalues of C. A more efficient way is to split C' as C = Q +uv?
where @ is the circular shift matrix and u* = (—pg — 1, —=p1, ..., —Pn_1) and
vt = e, = (0,...,0,1). Now we can apply the fast QR algorithm for the
rank-1 update.

Note that the main problem of using iterative method to solve poly-
nomial equations is when the polynomials have multiple zeros. This is
nevertheless not a problem for eigenvalue problems.



