MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET
Avd. Matematik
R. Bögvad

MM5022 HT 2022
Lösningar till Tentamen 24 oktober 2022

Sketch of solutions

1. Problem: Determine all entire functions f for which (i) $f(1)=f^{\prime}(1)=$ 0 and (ii) $|f(z)| \leq|z-1|^{2}$ for all $z \in \mathbb{C}$.
Solution: An entire function has an everywhere convergent power series expansion around $z=1: f=\sum_{0}^{\infty} a_{n}(z-1)^{n}$. Condition (i) is equivalent to $a_{0}=a_{1}=0$, and hence $f(z)=(z-1)^{2} g(z)$, where $g(z)$ is another entire function. The condition (ii) now implies that $|g(z)| \leq 1$; so g is a bounded entire function, and hence by Liouville's theorem, constant. Answer: any such function is $f(z)=c(z-1)^{2}$ where $|c| \leq 1$.
2. Problem: Describe the region in the w-plane that is the image of

$$
D:=\{z \in \mathbb{C}:|z|<1, \operatorname{Re} z>0, \operatorname{Im} z>0\}
$$

under the mapping

$$
w=\frac{z^{2}+1}{z^{2}-1}
$$

Solution: The mapping is the composition of $z \mapsto u=z^{2}$ and the Möbius transformation $w=m(u)=\frac{u+1}{u-1}$. The first map takes D to the part of $|z|<1$ that is in the upper halfplane(by considering what happens to the polar representations of complex numbers under squaring). This semi-disk is bounded by the circle $|z|=1$ and the real axis. Next step is to see what happens to these two curves under the the Möbius transformation, so compute some values$M(\infty)=1, M(-1)=0, M(1)=\infty$ and use that these kind of transformations take lines/circles to lines/circles. The three values determine a line (containing ∞) through 0,1 , that is the real axis. So M takes the real axis to the real axis. Next $M(i)=-i$ so M takes the three point $-1,1, i$ on $|z|=1$ to the three points $0, \infty,-i$ and the image has to be the imaginary axis(altternatively:one could have used that M is conformal). These two lines bound the four quadrants, but since $M(0)=-1$ and $M(i)=-i$ have to be boundary points, the image of the semi-disc has to be the third quadrant. The third quadrant is then the answer.
3. Problem: Determine the residue for each pole of the function

$$
f(z)=\frac{2+z^{7}}{z^{4}(z+1)^{3}}
$$

Use the result to calculate

$$
\int_{C} f(z) d z
$$

where C is the curve $|\operatorname{Re} z|+|\operatorname{Im} z|=0.5$, oriented counterclockwise.
Solution: The residues at the two poles $z=0$ (order 4) and $z=$ -1 (order 3) can be computed either by the formulas

$$
\begin{gathered}
\operatorname{Res}(f, 0)=\left.\frac{d^{3}}{d z^{3}}\left(z^{4} f(z)\right)\right|_{z=0}=\text { long calculation }=-20 \\
\operatorname{Res}(f, 1)=\left.\frac{d^{3}}{d z^{2}}\left((z+1)^{3} f(z)\right)\right|_{z=0}=\text { long calculation }=17,
\end{gathered}
$$

or else by expanding the function in a Laurent series. We exemplify by one of the residues. At $z=0$ we first get the following calculation by the standard Maclaurin expansion:

$$
\begin{gathered}
(z+1)^{-3}=1+(-3) z+\frac{(-3)(-4)}{2} z^{2}+\frac{(-3)(-4)(-5)}{3!} z^{3}+\ldots= \\
1-3 z+6 z^{2}-10 z^{3}+20 z^{4}+\ldots
\end{gathered}
$$

Clearly $\frac{z^{7}}{z^{4}(z+1)^{3}}=\frac{1}{(z+1)^{3}}$ is an analytic function at $z=0$, and will therefore not contribute to the residue, so we can compute

$$
f(z)=\frac{2+z^{7}}{z^{4}(z+1)^{3}}=2\left(z^{-4}-3 z^{-3}+6 z^{-2}-10 z^{-1}+20+\ldots\right) .
$$

This gives the result $\operatorname{Res}(f, 0)=-20$ again.
The only pole that lies inside the curve C is $z=0$, so the integral will be $-40 \pi i$ by the residue theorem.
4. Problem: Calculate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin \pi x}{x\left(1-x^{2}\right)} d x .
$$

Note that the function to be integrated actually has limits for the zeros of the denominator $x=0, \pm 1$ (check by l'Hopital e.g.). Let the path Γ_{R} be the following: it starts in $-R<-1$ goes to a small halfcircle clockwise around -1 , continues along the x-axis to a small halfcircle clockwise around 0 , continues along the x-axis to a small halfcircle clockwise around 1 and then along the x-axis to R. The integral is the limit of the integral along Γ_{R} as $R \rightarrow \infty$ and the halvcircles shrink to respective center.
We are going to rewrite

$$
\begin{equation*}
\sin (\pi z)=\frac{e^{i \pi z}-e^{-i \pi z}}{2 i} \tag{1}
\end{equation*}
$$

The main technical idea is that $\left|e^{i \pi z}\right|=e^{-I m \pi z} \leq 1$ in the upper halfplane, while $\left|e^{-i \pi z}\right| \leq 1$ in the lower halfplane.
Then consider the integral of $\frac{e^{i \pi z}}{z\left(1-z^{2}\right)}$ on the curve Ω that consists of first going along Γ_{R} and then continuing along a half circle C_{R}^{+}of radius R from R to $-R$. There are no poles inside Ω so the integral is 0 . and since $e^{i \pi z}$ is bounded on C_{R}^{+}, this means by the residue theorem and a standard argument, that the integral on Γ_{R} is 0 .
Now we do a similar argument for $\frac{e^{-i \pi z}}{z\left(1-z^{2}\right)}$. Let Ω_{-}be the path that begins as Γ_{R} and continues clock-wise along a half circle C_{R}^{-}of radius R from R to $-R$. This time the simple poles $-1,1,0$ are inside Ω_{-}, and they have residues $1 / 2,1 / 2,1$. The integral along C_{R}^{-}has the limit 0 , since $e^{-i \pi z}$ is bounded, and the residue theorem thus gives that the integral along Γ_{R} has the limit $-4 \pi i$ (the minus sign since we are going clockwise). Now we can use (1) to conclude that the limit is 2π.
5. Problem: Determine the Laurent series of the function

$$
\frac{z^{2}}{z^{2}-4 z+3},
$$

in the annulus $1<|z|<3$.
Solution: first do a partial fractions decomposition:

$$
\begin{equation*}
\frac{z^{2}}{z^{2}-4 z+3}=1+\left(\frac{9}{2}\right) \frac{1}{z-3}-\left(\frac{1}{2}\right) \frac{1}{z-1} . \tag{2}
\end{equation*}
$$

Then use the geometric series :

$$
\frac{1}{z-3}=\left(\frac{-1}{3}\right) \frac{1}{1-(z / 3)}=\frac{-1}{3} \sum_{n=0}^{\infty}(z / 3)^{n}
$$

Again:

$$
\frac{1}{z-1}=\left(\frac{1}{z}\right) \frac{1}{1-1 / z}=\sum_{n=1}^{\infty}(1 / z)^{n} .
$$

Substituting these two expressions into (2) solves the problem.

6. Problem:

(a) Show that a function $f(z)$, which is analytic in a neighbourhood N of $z=0$, may be developed in a series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}(1+z)^{-n},
$$

where the series is convergent and the equality is true in some neighbourhood N_{1} of $z=0$.
(b) Determine the first three non-zero coefficients in such a series expression for $\sin z$.
Solution:a) The map $z \mapsto w=M(z)=z /(1+z)$ is 1-1 onto and analytic everywhere except at $z=-1$, and takes $z=0$ to $w=0$. Its inverse function is $z=M^{-1}(w)=w /(1-w)$ has similar properties. If $g(w)=\sum_{n=0}^{\infty} a_{n} w^{n}$, then the power series identity in the problem says formally that

$$
\begin{equation*}
f(z)=g(M(z)) \Longleftrightarrow f\left(M^{-} 1(w)\right)=g(w) \tag{3}
\end{equation*}
$$

. Now we can argue as follows: by continuity there is a small neighbourhood N_{1} of $w=0$ that is mapped by M^{-1} into N, and consequently the composite map $g(w):=f\left(M^{-1}(w)\right)$ is analytic in N_{1}. If we develop g in a power series

$$
g(w)=\sum_{n=0}^{\infty} a_{n} w^{n},
$$

and use (3) we are done.
b) The coefiicients are determined by $\sin (w /(1-w))=\sum_{n=0}^{\infty} a_{n} w^{n}$.

Now

$$
\begin{aligned}
& \sin (w /(1-w))=\sin \left(w+w^{2}+w^{3}+\ldots\right)= \\
& \left(w+w^{2}+w^{3}+\ldots\right)-\left(w+w^{2}+w^{3}+\ldots\right)^{3} / 3!+\left(w+w^{2}+w^{3}+\ldots\right)^{5} / 5!+\ldots= \\
& w+w^{2}+(5 / 6) w^{3}+\ldots, \\
& \text { so } a_{0}=0, a_{1}, a_{2}=1, a_{3}=5 / 6 .
\end{aligned}
$$

