Solutions to Exam in Dynamical systems and optimal control theory, 2019-10-25

(1) We divide the proof into three parts. (i) "R; € R(A,B)” : Pick up an arbitrary

£ € Ry Now & = x(t) = fg eA(t=%) Bu(s)ds. By the Caylay Hamilton Theorem, e4* =
Z;L;Ol a;(t)A. Hence

tn—1 fot ap(t — s)u(s)ds
/ Z% (t — s)A7 Bu(s)ds = (B, AB, ..., A""'B) :
fg an_1(t — s)u(s)ds
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which means £ € R(A, B).

(i) "R(A, B) C ImW(0,t)” where W(0,t) = fg eAt=5) BB'eA'(=5)ds: Pick up & € R.
Then there exists n € R™" such that R(A, B)n = &. Assume & ¢ ImW(o,t) for same
t > 0. We shall show that this leads to a contradiction. Indeed this assumption implies
that the kerW (0,¢) is not empty and therefore there exits a nonzero & € R™ such that
W(0,t)¢2 = 0. Note that && # 0 (for otherwise & € ImW (0,¢)" = ImW(0,t) since
W (0,t) is symmetric, which is not true by assumption). Now consider

t
0=&W(0,1)6 = / el IABB I 6yds = / g3 B *ds.
0

implying fée(t’S)AB =0 for all s € [0,t]. Successive differentiation of both sides w.r.t. s
and evaluate at s =t gives

¢B=—¢AB= .. = (-1)"eA*"B=0 Vk>0, & &A*B=0Vk>0

= & = &R(A, B)n =0,
a contradiction, which shows that & € ImW (0, ¢).
(iii) ”ImW(O,t) C Ry”: Take any £ € ImW(0,t). Then there exits an n € R™ such that
W(0,¢)n = €. Define u = B'e?"(t=%)y for all 0 < s < t. Then the solution to & = Az + Bu
with z(0) =0 at ¢ is

t t

z(t) = / e~ Bu(s)ds = / A=) BB eA ) nds = W(0,t)n = €
0 0

which implies, by definition, £ € R;. Now we have R; C R(A, B) C ImW(0,t) C R;. This

completes the proof.
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Let A = 0 0 71 0 ;b - 1 . Then R(A7b) - (baAva b7A b) - 1 71 ]_ ,]_
00 0 -1 0 0 0 0 O

has rank 3. And the system is already in the decomposed form. The subsystem of the
first three equations is controllable and the uncontrollable mode is —1. So the system is
asymptotically controllable and thus stabilizable. A state feedback can be u = Kx with
K = (—16,-8,0,0). Since the system is not completely controllable so it is not possible
to place all eigenvalues at 2.

Pick up z € ker(K) < Kz =0. Then

0=—-AKz—KAz2+KLKz—-C'Cz=—-KAz—C'Cz

and thus
0=—2KAz—2C'Cz2=—-72C'Cz & Cz=0



Now (*) becomes KAz = 0, i.e. Az € ker(K), that is ker(K) is A-invariant. Multiplying
the (ARE) by Az from left gives

0=-—A'KAz — KA?2+ KLKAz — C'CAz = - KAz —C'Cz= —-KA%2 — C'CAz

=0=—2AKA*2 - ACCAz, = CAz2=0 = KA?2=0 = A%z € ker(K)
0
Continue in the similar manner we obtain A*z € ker(K), for k = 1,2,...,n — 1. This yields

c C

CA CA
z=0= z¢€ker

CA.n—l CA.n_l
Since (A4, C) is observable, z must be zero so the ker(K) is trivial, i.e., K is nonsingular.
Solving the equations —z1 + g(x2) = 0, 2 = —x9 + h(x1) = 0 we obtain a unique
equilibrium at the origin. Consider next the function V (x1,z2) = 23/2 + 23 /2. Obviously
V and its partial derivatives are continuous and V(x1,2) > 00 for all 0 # (z1,72) € R?.
Now we compute V.

Ve, x0) = —22 — 22 + 219(22) + zoh(1) < —2? — 22 + |2122|/2 + |2122 /2
1 1
= s~ sl < o~ + 16T ) — o+ ad) = —V(eaa2) <0
for all 0 # (z1,22) € R2. So the systemis globally asymptotically stable.
Here is a "raw” computation. Note that we only have to compute the (1, 1)-element in
(sI — A)~! because only the first element in b and c is non-zero. I use the Cramér rule and
multiply then 1/g; to get /(sI — A)~1b = Zg; where
9 1 1 1 1 1 1 1
p(s) =s"+ + + + )s + + +
9293 9394 9495 9596 92939495 92939596 93949596
1 1 1
q(s) :91$3+(7+ g1 + g1 + g1 + g1 52+ +

92 9293 9394 9495 9596 929394 929495
1 1
2N RN R S
92939495 929596 92939596 93949596 9293949596
Then
p(s) 1 1 - 1
a(s) - (s) 1
q(s) q(S)/p(S) ag1s + p;(SS) g1s + p(S)/pz(s)
_ s 1 1 1 1
where pa(s) = ;72 + (929394 + 929495 + 929596)8 + 9293949596
1 1 1 1
o) - ps(s) 1 , where p3(s) = : + +
P(s) g+ B8 et oeme 9295 92939195 92939596
FEY I 9293195 96 +m _ 1
p2(s) — ggs+ ga 92939195 __. 935 + pa(s) — ges 1
p3(s) p3(s) p3(s) p3(s)/pa(s)
1
pg(s) _ 92939495 __
=04+ —7F =091+ I
pa(s) pa(s) 955 + o

It’s easy to check that (Ab,c) € Si?{‘ffa'Obs so the realization is minimal. And the given
sequence can be realized by the above realization with g; =1,i=1,...,6
2



