Solutions to Exam in Dynamical systems and optimal control theory, 2019-10-25
(1) We divide the proof into three parts. (i) " $\mathcal{R}_{t} \subseteq \mathcal{R}(A, B)$ " : Pick up an arbitrary $\xi \in \mathcal{R}_{t}$. Now $\xi=x(t)=\int_{0}^{t} e^{A(t-s)} B u(s) d s$. By the Caylay Hamilton Theorem, $e^{A t}=$ $\sum_{j=0}^{n-1} \alpha_{j}(t) A^{j}$. Hence

$$
\xi=\int_{0}^{t} \sum_{j=0}^{n-1} \alpha_{j}(t-s) A^{j} B u(s) d s=\left(B, A B, \ldots, A^{n-1} B\right) \underbrace{\left(\begin{array}{c}
\int_{0}^{t} \alpha_{0}(t-s) u(s) d s \\
\vdots \\
\int_{0}^{t} \alpha_{n-1}(t-s) u(s) d s
\end{array}\right)}_{\in \mathbb{R}^{n \times m}}
$$

which means $\xi \in \mathcal{R}(A, B)$.
(ii) " $\mathcal{R}(A, B) \subseteq \operatorname{Im} W(0, t)$ " where $W(0, t)=\int_{0}^{t} e^{A(t-s)} B B^{\prime} e^{A^{\prime}(t-s)} d s$: Pick up $\xi_{1} \in \mathcal{R}$. Then there exists $\eta \in \mathbb{R}^{n m}$ such that $R(A, B) \eta=\xi_{1}$. Assume $\xi_{1} \notin \operatorname{Im} W(o, t)$ for same $t>0$. We shall show that this leads to a contradiction. Indeed this assumption implies that the $\operatorname{ker} W(0, t)$ is not empty and therefore there exits a nonzero $\xi_{2} \in \mathbb{R}^{n}$ such that $W(0, t) \xi_{2}=0$. Note that $\xi_{2}^{\prime} \xi_{1} \neq 0$ (for otherwise $\xi_{1} \in \operatorname{Im} W(0, t)^{\prime}=\operatorname{Im} W(0, t)$ since $W(0, t)$ is symmetric, which is not true by assumption). Now consider

$$
0=\xi_{2}^{\prime} W(0, t) \xi_{2}=\int_{0}^{t} \xi_{2}^{\prime} e^{(t-s) A} B B^{\prime} e^{(t-s) A^{\prime}} \xi_{2} d s=\int_{0}^{t}\left\|\xi_{2}^{\prime} e^{(t-s) A} B\right\|^{2} d s
$$

implying $\xi_{2}^{\prime} e^{(t-s) A} B=0$ for all $s \in[0, t]$. Successive differentiation of both sides w.r.t. s and evaluate at $s=t$ gives

$$
\begin{aligned}
\xi_{2}^{\prime} B=-\xi_{2}^{\prime} A B=\ldots= & (-1)^{k} \xi_{2}^{\prime} A^{k} B=0 \quad \forall k>0, \Leftrightarrow \xi_{2}^{\prime} A^{k} B=0 \forall k \geq 0 \\
& \Rightarrow \xi_{2}^{\prime} \xi_{1}=\xi_{2}^{\prime} R(A, B) \eta=0,
\end{aligned}
$$

a contradiction, which shows that $\xi_{1} \in \operatorname{Im} W(0, t)$.
(iii) " $\operatorname{Im} W(0, t) \subseteq \mathcal{R}_{t}$ ": Take any $\xi \in \operatorname{Im} W(0, t)$. Then there exits an $\eta \in \mathbb{R}^{n}$ such that $W(0, t) \eta=\xi$. Define $u=B^{\prime} e^{A^{\prime}(t-s)} \eta$ for all $0 \leq s \leq t$. Then the solution to $\dot{x}=A x+B u$ with $x(0)=0$ at t is

$$
x(t)=\int_{0}^{t} e^{A(t-s)} B u(s) d s=\int_{0}^{t} e^{A(t-s)} B B^{\prime} e^{A^{\prime}(t-s)} \eta d s=W(0, t) \eta=\xi
$$

which implies, by definition, $\xi \in \mathcal{R}_{t}$. Now we have $\mathcal{R}_{t} \subseteq \mathcal{R}(A, B) \subseteq \operatorname{Im} W(0, t) \subseteq \mathcal{R}_{t}$. This completes the proof.
(2) Let $A=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right), b=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$. Then $R(A, b)=\left(b, A b, A^{2} b, A^{3} b\right)=\left(\begin{array}{cccc}0 & 1 & 4 & 12 \\ 1 & 2 & 4 & 8 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$ has rank 3. And the system is already in the decomposed form. The subsystem of the first three equations is controllable and the uncontrollable mode is -1 . So the system is asymptotically controllable and thus stabilizable. A state feedback can be $u=K x$ with $K=(-16,-8,0,0)$. Since the system is not completely controllable so it is not possible to place all eigenvalues at 2 .
(3) Pick up $z \in \operatorname{ker}(K) \Leftrightarrow K z=0$. Then

$$
\begin{equation*}
0=-A^{\prime} K z-K A z+K L K z-C^{\prime} C z=-K A z-C^{\prime} C z \tag{}
\end{equation*}
$$

and thus

$$
0=-z^{\prime} K A z-z^{\prime} C^{\prime} C z=-z^{\prime} C^{\prime} C z \Leftrightarrow C z=0
$$

Now $\left({ }^{*}\right)$ becomes $K A z=0$, i.e. $A z \in \operatorname{ker}(K)$, that is $\operatorname{ker}(K)$ is A-invariant. Multiplying the (ARE) by $A z$ from left gives
$0=-A^{\prime} K A z-K A^{2} z+K L K A z-C^{\prime} C A z=-K A z-C^{\prime} C z=-K A^{2}-C^{\prime} C A z$
$\Rightarrow 0=\underbrace{-z^{\prime} A^{\prime} K}_{0} A^{2} z-z^{\prime} A^{\prime} C^{\prime} C A z, \Rightarrow C A z=0 \Rightarrow K A^{2} z=0 \Rightarrow A^{2} z \in \operatorname{ker}(K)$
Continue in the similar manner we obtain $A^{k} z \in \operatorname{ker}(K)$, for $k=1,2, \ldots, n-1$. This yields

$$
\left(\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right) z=0 \Rightarrow z \in \operatorname{ker}\left(\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right)
$$

Since (A, C) is observable, z must be zero so the $\operatorname{ker}(K)$ is trivial, i.e., K is nonsingular.
(4) Solving the equations $-x_{1}+g\left(x_{2}\right)=0, \dot{x}_{2}=-x_{2}+h\left(x_{1}\right)=0$ we obtain a unique equilibrium at the origin. Consider next the function $V\left(x_{1}, x_{2}\right)=x_{1}^{2} / 2+x_{2}^{2} / 2$. Obviously V and its partial derivatives are continuous and $V\left(x_{1,2}\right)>00$ for all $0 \neq\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Now we compute \dot{V}.

$$
\begin{aligned}
& \dot{V}\left(x_{1}, x_{2}\right)=-x_{1}^{2}-x_{2}^{2}+x_{1} g\left(x_{2}\right)+x_{2} h\left(x_{1}\right) \leq-x_{1}^{2}-x_{2}^{2}+\left|x_{1} x_{2}\right| / 2+\left|x_{1} x_{2}\right| / 2 \\
& =-x_{1}^{2}-x_{2}^{2}+\left|x_{1} x_{2}\right| \leq-x_{1}^{2}-x_{2}^{2}+\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)=-V\left(x_{1}, x_{2}\right)<0
\end{aligned}
$$

for all $0 \neq\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. So the systemis globally asymptotically stable.
(5) Here is a "raw" computation. Note that we only have to compute the $(1,1)$-element in $(s I-A)^{-1}$ because only the first element in b and c is non-zero. I use the Cramér rule and multiply then $1 / g_{1}$ to get $c^{\prime}(s I-A)^{-1} b=\frac{p(s)}{q(s)}$ where

$$
\begin{aligned}
p(s) & =s^{2}+\left(\frac{1}{g_{2} g_{3}}+\frac{1}{g_{3} g_{4}}+\frac{1}{g_{4} g_{5}}+\frac{1}{g_{5} g_{6}}\right) s+\frac{1}{g_{2} g_{3} g_{4} g_{5}}+\frac{1}{g_{2} g_{3} g_{5} g_{6}}+\frac{1}{g_{3} g_{4} g_{5} g_{6}} \\
q(s) & =g_{1} s^{3}+\left(\frac{1}{g_{2}}+\frac{g_{1}}{g_{2} g_{3}}+\frac{g_{1}}{g_{3} g_{4}}+\frac{g_{1}}{g_{4} g_{5}}+\frac{g_{1}}{g_{5} g_{6}}\right) s^{2}+\left(\frac{1}{g_{2} g_{3} g_{4}}+\frac{1}{g_{2} g_{4} g_{5}}+\right. \\
& \left.\frac{g_{1}}{g_{2} g_{3} g_{4} g_{5}}+\frac{1}{g_{2} g_{5} g_{6}}+\frac{g_{1}}{g_{2} g_{3} g_{5} g_{6}}+\frac{g_{1}}{g_{3} g_{4} g_{5} g_{6}}\right) s+\frac{1}{g_{2} g_{3} g_{4} g_{5} g_{6}}
\end{aligned}
$$

Then

$$
\frac{p(s)}{q(s)}=\frac{1}{q(s) / p(s)}=\frac{1}{g_{1} s+\frac{p_{2}(s)}{p(s)}}=\frac{1}{g_{1} s+\frac{1}{p(s) / p_{2}(s)}}
$$

where $p_{2}(s)=\frac{s^{2}}{g_{2}}+\left(\frac{1}{g_{2} g_{3} g_{4}}+\frac{1}{g_{2} g_{4} g_{5}}+\frac{1}{g_{2} g_{5} g_{6}}\right) s+\frac{1}{g_{2} g_{3} g_{4} g_{5} g_{6}}$

$$
\frac{p(s)}{p_{2}(s)}=\frac{1}{g_{2}+\frac{p_{3}(s)}{p_{2}(s)}}=\frac{1}{g_{2}+\frac{1}{p_{2}(s) / p_{3}(s)}}, \text { where } p_{3}(s)=\frac{s}{g_{2} g_{3}}+\frac{1}{g_{2} g_{3} g_{4} g_{5}}+\frac{1}{g_{2} g_{3} g_{5} g_{6}}
$$

$$
\frac{p_{2}(s)}{p_{3}(s)}=g_{3} s+\frac{\frac{\frac{s}{g_{2} g_{3}}+\frac{1}{g_{2} g_{3} g_{5} g_{6}}+\frac{1}{g_{4}} \frac{1}{g_{2} g_{3} g_{4} g_{5}}}{}-\frac{1}{g_{2} g_{3} g_{4}^{2} g_{5}}}{p_{3}(s)}=: g_{3} s+\frac{p_{4}(s)}{p_{3}(s)}=g_{3} s+\frac{1}{p_{3}(s) / p_{4}(s)}
$$

$$
\frac{p_{3}(s)}{p_{4}(s)}=g_{4}+\frac{\frac{1}{g_{2} g_{3} g_{4} g_{5}}}{p_{4}(s)}=g_{4}+\frac{1}{g_{5} s+\frac{1}{g_{6}}}
$$

It's easy to check that $(A b, c) \in \mathcal{S}_{n, 1,1}^{\text {contra.Obs }}$ so the realization is minimal. And the given sequence can be realized by the above realization with $g_{i}=1, i=1, \ldots, 6$

