
Solutions to Exam in Dynamical systems and optimal control theory, 2019-10-25

(1) We divide the proof into three parts. (i) ”Rt ⊆ R(A,B)” : Pick up an arbitrary

ξ ∈ Rt. Now ξ = x(t) =
∫ t

0
eA(t−s)Bu(s)ds. By the Caylay Hamilton Theorem, eAt =∑n−1

j=0 αj(t)A
j . Hence

ξ =

∫ t

0

n−1∑
j=0

αj(t− s)AjBu(s)ds = (B,AB, ..., An−1B)


∫ t

0
α0(t− s)u(s)ds

...∫ t

0
αn−1(t− s)u(s)ds


︸ ︷︷ ︸

∈Rn×m

which means ξ ∈ R(A,B).

(ii) ”R(A,B) ⊆ ImW (0, t)” where W (0, t) =
∫ t

0
eA(t−s)BB′eA

′(t−s)ds: Pick up ξ1 ∈ R.
Then there exists η ∈ Rnm such that R(A,B)η = ξ1. Assume ξ1 6∈ ImW (o, t) for same
t > 0. We shall show that this leads to a contradiction. Indeed this assumption implies
that the kerW (0, t) is not empty and therefore there exits a nonzero ξ2 ∈ Rn such that
W (0, t)ξ2 = 0. Note that ξ′2ξ1 6= 0 (for otherwise ξ1 ∈ ImW (0, t)′ = ImW (0, t) since
W (0, t) is symmetric, which is not true by assumption). Now consider

0 = ξ′2W (0, t)ξ2 =

∫ t

0

ξ′2e
(t−s)ABB′e(t−s)A

′
ξ2ds =

∫ t

0

‖ξ′2e(t−s)AB‖2ds.

implying ξ′2e
(t−s)AB = 0 for all s ∈ [0, t]. Successive differentiation of both sides w.r.t. s

and evaluate at s = t gives

ξ′2B = −ξ′2AB = ... = (−1)kξ′2A
kB = 0 ∀k > 0, ⇔ ξ′2A

kB = 0 ∀k ≥ 0

⇒ ξ′2ξ1 = ξ′2R(A,B)η = 0,

a contradiction, which shows that ξ1 ∈ ImW (0, t).
(iii) ”ImW (0, t) ⊆ Rt”: Take any ξ ∈ ImW (0, t). Then there exits an η ∈ Rn such that

W (0, t)η = ξ. Define u = B′eA
′(t−s)η for all 0 ≤ s ≤ t. Then the solution to ẋ = Ax+Bu

with x(0) = 0 at t is

x(t) =

∫ t

0

eA(t−s)Bu(s)ds =

∫ t

0

eA(t−s)BB′eA
′(t−s)ηds = W (0, t)η = ξ

which implies, by definition, ξ ∈ Rt. Now we have Rt ⊆ R(A,B) ⊆ ImW (0, t) ⊆ Rt. This
completes the proof.

(2) LetA =


2 1 0 0
0 2 0 0
0 0 −1 0
0 0 0 −1

 , b =


0
1
1
0

. ThenR(A, b) = (b, Ab,A2b, A3b) =


0 1 4 12
1 2 4 8
1 −1 1 −1
0 0 0 0


has rank 3. And the system is already in the decomposed form. The subsystem of the
first three equations is controllable and the uncontrollable mode is −1. So the system is
asymptotically controllable and thus stabilizable. A state feedback can be u = Kx with
K = (−16,−8, 0, 0). Since the system is not completely controllable so it is not possible
to place all eigenvalues at 2.

(3) Pick up z ∈ ker(K) ⇔ Kz = 0. Then

(*) 0 = −A′Kz −KAz +KLKz − C ′Cz = −KAz − C ′Cz
and thus

0 = −z′KAz − z′C ′Cz = −z′C ′Cz ⇔ Cz = 0



Now (*) becomes KAz = 0, i.e. Az ∈ ker(K), that is ker(K) is A-invariant. Multiplying
the (ARE) by Az from left gives

0 = −A′KAz −KA2z +KLKAz − C ′CAz = −KAz − C ′Cz = −KA2 − C ′CAz

⇒ 0 = −z′A′K︸ ︷︷ ︸
0

A2z − z′A′C ′CAz, ⇒ CAz = 0 ⇒ KA2z = 0 ⇒ A2z ∈ ker(K)

Continue in the similar manner we obtain Akz ∈ ker(K), for k = 1, 2, ..., n− 1. This yields
C
CA

...
CAn−1

 z = 0⇒ z ∈ ker


C
CA

...
CAn−1


Since (A,C) is observable, z must be zero so the ker(K) is trivial, i.e., K is nonsingular.

(4) Solving the equations −x1 + g(x2) = 0, ẋ2 = −x2 + h(x1) = 0 we obtain a unique
equilibrium at the origin. Consider next the function V (x1, x2) = x21/2 + x22/2. Obviously
V and its partial derivatives are continuous and V (x1,2 ) > 00 for all 0 6= (x1, x2) ∈ R2.

Now we compute V̇ .

V̇ (x1, x2) = −x21 − x22 + x1g(x2) + x2h(x1) ≤ −x21 − x22 + |x1x2|/2 + |x1x2|/2

= −x21 − x22 + |x1x2| ≤ −x21 − x22 +
1

2
(x21 + x22)− 1

2
(x21 + x22) = −V (x1, x2) < 0

for all 0 6= (x1, x2) ∈ R2. So the systemis globally asymptotically stable.
(5) Here is a ”raw” computation. Note that we only have to compute the (1, 1)-element in

(sI−A)−1 because only the first element in b and c is non-zero. I use the Cramér rule and

multiply then 1/g1 to get c′(sI −A)−1b = p(s)
q(s) where

p(s) = s2 + (
1

g2g3
+

1

g3g4
+

1

g4g5
+

1

g5g6
)s+

1

g2g3g4g5
+

1

g2g3g5g6
+

1

g3g4g5g6

q(s) = g1s
3 + (

1

g2
+

g1
g2g3

+
g1
g3g4

+
g1
g4g5

+
g1
g5g6

)s2 + (
1

g2g3g4
+

1

g2g4g5
+

g1
g2g3g4g5

+
1

g2g5g6
+

g1
g2g3g5g6

+
g1

g3g4g5g6
)s+

1

g2g3g4g5g6

Then
p(s)

q(s)
=

1

q(s)/p(s)
=

1

g1s+ p2(s)
p(s)

=
1

g1s+ 1
p(s)/p2(s)

where p2(s) = s2

g2
+ ( 1

g2g3g4
+ 1

g2g4g5
+ 1

g2g5g6
)s+ 1

g2g3g4g5g6

p(s)

p2(s)
=

1

g2 + p3(s)
p2(s)

=
1

g2 + 1
p2(s)/p3(s)

, where p3(s) =
s

g2g3
+

1

g2g3g4g5
+

1

g2g3g5g6

p2(s)

p3(s)
= g3s+

s
g2g3

+ 1
g2g3g5g6

+ 1
g2g3g4g5

g4
− 1

g2g3g2
4g5

p3(s)
=: g3s+

p4(s)

p3(s)
= g3s+

1

p3(s)/p4(s)

p3(s)

p4(s)
= g4 +

1
g2g3g4g5

p4(s)
= g4 +

1

g5s+ 1
g6

It’s easy to check that (Ab, c) ∈ Scontra.Obs
n,1,1 so the realization is minimal. And the given

sequence can be realized by the above realization with gi = 1, i = 1, ..., 6
2


