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Open book exam: Sontag, Mathematical Control Theory, Deterministic finite dimensional systems,
2nd edition, Springer. No other material is allowed.
There are 5 problems with 10 points each. They are not arranged in degree of difficulty.

(1) Consider the linear time invariant system ẋ(t) = Ax(t)+Bu(t) starting at x(0) = 0, where
A ∈ Rn×n and B ∈ Rn×m. Let Rt := {ξ ∈ Rn : ∃u such that x(t) = ξ}. Show that, for all
t > 0, Rt = R(A,B).

(2) Is the following system stabilizable?
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u

Determine the control law u = Kx so that the system has its poles at −2,−2,−1,−1, if
the answer is affirmative. Otherwise show that it is impossible. Is it possible to place all
poles at −2? Justify your answer.

(3) Assume that (A,C) ∈ Sobsn,p . Show that every symmetric solution, K, of the following
matrix equation

−A′K −KA+KLK − C ′C = 0

is nonsingular.

(4) Consider the nonlinear system

ẋ1 = −x1 + g(x2)

ẋ2 = −x2 + h(x1)

where g(0) = h(0) = 0, and |g(u)| ≤ |u|/2 and |h(u)| ≤ |u|/2. Show that it is globally
asymptotically stable.

(5) Let A =
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 = c. Show that
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and assume that gi > 0.

Is this realization minimal?
Determine a minimal realization for the sequence
A = {1,−1, 2,−5, 14,−42, 131,−417, 1341,−4332, 14041, ...}. Can A be realized in the
above form? In this case determine gi’s.
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