Topology MM7052, HT22.

Solutions to Exam 2022-12-15

- (1) (a) \emptyset and \mathbb{Z} are clearly open. If $\{U_i\}_{i\in I}$ is a family of open sets, then $\cup_i U_i$ is open because $n \in \bigcup_i U_i \Leftrightarrow n \in U_i$ for some $i \in I \Leftrightarrow -n \in U_i$ for some $i \in I \Leftrightarrow -n \in \cup_i U_i$. Similarly, $n \in \cap_i U_i \Leftrightarrow -n \in \cap_i U_i$ (regardless of whether or not I is finite).
 - (b) Not Hausdorff: if U, V are open sets such that $-1 \in U$ and $1 \in V$ then $1 \in U$ so $U \cap V \neq \emptyset$.

Not compact: $\mathbb{Z} = \bigcup_{n \in \mathbb{Z}} \{-n, n\}$ is an open cover that lacks a finite

Second countable: $\mathcal{B} = \{\{-n, n\} \mid n \in \mathbb{Z}\}$ is a countable basis for the topology because each $\{-n,n\}$ is open and every open set U can be written as $U = \bigcup_{n \in U} \{-n, n\}$.

(2) (a) $p|_A: A \to p(A)$ is clearly surjective so we need to check that

$$U \subseteq p(A)$$
 open $\Leftrightarrow (p|_A)^{-1}(U) \subseteq A$ open.

 \Rightarrow : this is just saying that $p|_A$ is continuous, which is clear as it is obtained from p by restricting the domain and codomain.

 \Leftarrow : Since A is open in X by assumption, $(p|_A)^{-1}(U)$ is also open in X. Since p is an open map, it follows that $U = p((p|_A)^{-1}(U))$ is open in Y and hence also in p(A).

- (b) For example, let $X = \{a, b, c\}$ with open sets \emptyset , $\{a\}$, $\{a, b\}$, $\{a, b, c\}$, let $Y = \{x, y\}$ with open sets \emptyset , $\{x, y\}$, define $p: X \to Y$ by p(a) =p(c) = x, p(b) = y, and let $A = \{a, b\}$. Then p is a quotient map but $p|_A \colon A \to p(A)$ is not.
- (3) (a) If $A \subseteq \mathbb{R}$ contains two points $a, b \in A$ where a < b, then $(-\infty, a] \cap A$ and $(a, \infty) \cap A$ are two non-empty disjoint open subsets of A whose union is A, showing A is disconnected. (Note that $(-\infty, a]$ and (a, ∞) are open because they can be written as the union of all sets of the form (x, a] and (a, x], respectively, for $x \in \mathbb{R}$.)
 - (b) Totally disconnected: Let $A \subseteq C$ and suppose $f, g \in A$ with $f \neq g$. This means that $f(n) \neq g(n)$ for some $n \in \mathbb{Z}$, so f(n) = 0 and g(n) = 1 or f(n) = 1 and g(n) = 0. Either way, $ev_n^{-1}(0) \cap A$ and $ev_n^{-1}(1) \cap A$ are two non-empty disjoint open subsets of A whose union is A, so Ais disconnected.

Not discrete: the topology has a countable basis,

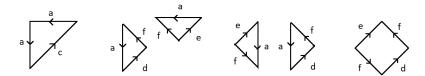
$$\left\{ ev_{n_1}^{-1}(A_1) \cap \ldots \cap ev_{n_k}^{-1}(A_k) \mid A_i \subseteq \{0,1\}, n_i \in \mathbb{Z}, k \ge 1 \right\},\,$$

but the discrete topology does not as $\{0,1\}^{\mathbb{Z}}$ is uncountable.

(4) We may present the torus as $T = I \times I / \sim$ where $(0,t) \sim (1,t)$ and $(t,0) \sim (t,1)$ for all $t \in I = [0,1]$. The action of C_2 on T is induced by the action on $I \times I$ that flips the coordinates. Consider the triangle $\Delta =$ $\{(x,y)\in I\times I\mid x\leq y\}$. The map $q\colon\Delta\to T/C_2$, defined as the composite of the inclusion $\Delta \to I \times I$ followed by the quotient maps $I \times I \to T \to T/C_2$, is a continuous surjective map from a compact space to a Hausdorff space (the orbit space T/C_2 is Hausdorff since C_2 is finite and T is Hausdorff), so it is a quotient map by the closed map lemma. Hence, it induces a homeomorphism

$$h: \Delta/\sim T/C_2,$$

where $p \sim p'$ if and only if q(p) = q(p'). The non-trivial identifications made by q are $(0,t) \sim (t,1)$ for $t \in I$. This is exactly the polygonal presentation to the left in the figure below. The rest of the figure indicates a sequence of elementary transformations that transforms this to a standard presentation for the Möbius band.



(5) By the lifting criterion, a map $f: \mathbb{R}P^n \to S^1$ lifts to the universal cover

if and only if $f_*(\pi_1(\mathbb{R}P^n))$ is the trivial subgroup of $\pi_1(S^1) \cong \mathbb{Z}$. For $n \geq 2$ we have that $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}/2\mathbb{Z}$. This can be seen by identifying $\mathbb{R}P^n$ with the orbit space associated to the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^n , using that the latter is a covering space action and that S^n is simply connected for $n \geq 2$. Since there are no non-zero homomorphisms from $\mathbb{Z}/2\mathbb{Z}$ to \mathbb{Z} , this implies that $f_*(\pi_1(\mathbb{R}P^n))$ must be the trivial subgroup of $\pi_1(S^1)$, so a lift \widetilde{f} exists in this case. Since \mathbb{R} is contractible, \widetilde{f} is homotopic to a constant map. This implies that $f = p \circ \widetilde{f}$ is homotopic to a constant map.

(6) Let X denote the complement of the three coordinate axes in \mathbb{R}^3 . The inclusion $i: S^2 \cap X \to X$ is a homotopy equivalence. Indeed, if we define $r: X \to S^2 \cap X$ by r(x) = x/|x| and $H: X \times [0,1] \to X$ by the formula H(x,t) = (1-t)x + tx/|x|, then ri = 1 and H is a homotopy from 1_X to ir. Next, observe that $S^2 \cap X$ is S^2 with six points removed (namely $(\pm 1,0,0)$, $(0,\pm 1,0)$, and $(0,0,\pm 1)$). By stereographic projection from (0,0,1) to the xy-plane, $S^2 \cap X$ is homeomorphic to \mathbb{R}^2 with five points removed (namely $(\pm 1,0), (0,\pm 1)$ and (0,0)). The fundamental group of $\mathbb{R}^2 \setminus \{p_1,\ldots,p_r\}$, where p_1, \ldots, p_r are distinct points in \mathbb{R}^2 , is isomorphic to the r-fold free product \mathbb{Z}^{*r} , i.e., the free group on r generators. This can be shown by induction on r. The base case r=1 follows from $\mathbb{R}^2 \setminus \{p_1\} \cong \mathbb{R}^2 \setminus \{0\} \simeq S^1$ and the fact that $\pi_1(S^1) \cong \mathbb{Z}$. Induction step: Let r > 1. If the points p_1, \ldots, p_r are not on a vertical line, then we can find real numbers a < bsuch that both $U' = \{(x, y) \in \mathbb{R}^2 \mid x > a\}$ and $V' = \{(x, y) \in \mathbb{R}^2 \mid x < b\}$ contain at least one of the points p_i but $U' \cap V'$ contains none of the points. Setting $U = U' \cap (\mathbb{R}^2 \setminus \{p_1, \dots, p_r\})$ and $V = V' \cap (\mathbb{R}^2 \setminus \{p_1, \dots, p_r\})$, we get that $U \cup V = \mathbb{R}^2 \setminus \{p_1, \dots, p_r\}, U \cong \mathbb{R}^2 \setminus \{s \text{ points}\}, V \cong \mathbb{R}^2 \setminus \{t \text{ points}\},$ where s + t = r and s, t < r, and $U \cap V = (a, b) \times \mathbb{R}$ is contractible. By the Seifert-van Kampen theorem and induction,

$$\pi_1(U \cup V) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V) \cong \mathbb{Z}^{*s} *_{\{1\}} \mathbb{Z}^{*t} \cong \mathbb{Z}^{*r}.$$

If the points happen to be on a vertical line, then they are not on a horizontal line (since we assume r > 1) and one can argue as above using sets of the form $U' = \{(x, y) \in \mathbb{R}^2 \mid y > a\}$ and $V' = \{(x, y) \in \mathbb{R}^2 \mid y < b\}$.