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ToprorLocy MM7052, HT22.

Solutions to Exam 2022-12-15

() and Z are clearly open. If {U;};cs is a family of open sets, then U;U;
is open because n € U;U; < n € U; for some i € I < —n € U; for some
1 € I < —n € Y;U;. Similarly, n € N;U; & —n € N;U; (regardless of
whether or not I is finite).

Not Hausdorff: if U, V are open sets such that —1 € U and 1 € V then
1€eUsoUNV #0.

Not compact: Z = J,,cz{—n,n} is an open cover that lacks a finite
subcover.

Second countable: B = {{—n,n} | n € Z} is a countable basis for the
topology because each {—n,n} is open and every open set U can be
written as U = J,,c{—n,n}.

pla: A — p(A) is clearly surjective so we need to check that
U C p(A) open & (p|a) " (U) C A open.

=: this is just saying that p|a is continuous, which is clear as it is
obtained from p by restricting the domain and codomain.

<: Since A is open in X by assumption, (p|4)~!(U) is also open in
X. Since p is an open map, it follows that U = p((p|a)~1(U)) is open
in Y and hence also in p(A).

For example, let X = {a,b,c} with open sets 0, {a}, {a,b}, {a,b,c},
let Y = {z,y} with open sets @, {x,y}, define p: X — Y by p(a) =
p(c) =z, p(b) =y, and let A = {a,b}. Then p is a quotient map but
pla: A — p(A) is not.

If A C R contains two points a,b € A where a < b, then (—o0,a]N A
and (a,00) N A are two non-empty disjoint open subsets of A whose
union is A, showing A is disconnected. (Note that (—oo, a] and (a, 00)
are open because they can be written as the union of all sets of the
form (z,a] and (a, z], respectively, for x € R.)

Totally disconnected: Let A C C and suppose f,g € A with f # g.
This means that f(n) # g(n) for some n € Z, so f(n) =0and g(n) =1
or f(n) =1 and g(n) = 0. Either way, ev, *(0) N A and ev, *(1) N A
are two non-empty disjoint open subsets of A whose union is A, so A
is disconnected.

Not discrete: the topology has a countable basis,

{6’[);11(141) n...N €’U;k1(Ak) | A; C {0, 1},ni el k> 1} s

but the discrete topology does not as {0, 1}# is uncountable.

(4) We may present the torus as T = I x I/ ~ where (0,t) ~ (1,t) and

(t,0) ~ (t,1) for all t € I = [0,1]. The action of Cy on T is induced by
the action on I x I that flips the coordinates. Consider the triangle A =
{(z,y) € I x I|x <y}. The map q: A — T/Cs, defined as the composite
of the inclusion A — I'x I followed by the quotient maps IxI — T — T/Cs,
is a continuous surjective map from a compact space to a Hausdorff space
(the orbit space T'/C5 is Hausdorff since Cy is finite and T is Hausdorff),
so it is a quotient map by the closed map lemma. Hence, it induces a
homeomorphism

h: Af ~ = T/Ch,
1



where p ~ p’ if and only if g(p) = ¢(p’). The non-trivial identifications made
by ¢ are (0,t) ~ (¢t,1) for t € I. This is exactly the polygonal presentation
to the left in the figure below. The rest of the figure indicates a sequence of
elementary transformations that transforms this to a standard presentation
for the Mobius band.
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if and only if f. (w1 (RP™)) is the trivial subgroup of m(S') = Z. For n > 2
we have that w1 (RP"™) = Z/27Z. This can be seen by identifying RP™ with
the orbit space associated to the antipodal action of Z/2Z on S™, using that
the latter is a covering space action and that S™ is simply connected for
n > 2. Since there are no non-zero homomorphisms from Z/2Z to Z, this
implies that f. (71 (RP™)) must be the trivial subgroup of 71(S1), so a lift
fexists in this case. Since R is contractible, fis homotopic to a constant
map. This implies that f = po f is homotopic to a constant map.

Let X denote the complement of the three coordinate axes in R3. The
inclusion i: S2 N X — X is a homotopy equivalence. Indeed, if we define
r: X — SN X by r(z) = /|| and H: X x [0,1] — X by the formula
H(xz,t) = (1—t)x+tx/|z|, then ri = 1 and H is a homotopy from 1y to ir.
Next, observe that S?N X is S? with six points removed (namely (+1, 0, 0),
(0,£1,0), and (0,0,+£1)). By stereographic projection from (0,0,1) to the
xy-plane, S? N X is homeomorphic to R? with five points removed (namely
(£1,0), (0,#£1) and (0,0)). The fundamental group of R? \ {p1,...,p.},
where p1,...,p, are distinct points in R?, is isomorphic to the r-fold free
product Z*", i.e., the free group on r generators. This can be shown by
induction on 7. The base case 7 = 1 follows from R?\ {p;} = R?\ {0} ~ S*
and the fact that 71(S') 2 Z. Induction step: Let r > 1. If the points
p1,-..,pr are not on a vertical line, then we can find real numbers a < b
such that both U’ = {(z,y) € R? | 2 > a} and V' = {(x,y) € R? | < b}
contain at least one of the points p; but U'NV’ contains none of the points.
Setting U = U’ N (R%\ {p1,...,pr}) and V = V' N (R2\ {p1,...,pr}), we
get that UUV = R2\{p;...,p,}, U 2 R?\ {s points}, V = R?\ {t points},
where s+t =rand s,t <r,and UNV = (a,b) X R is contractible. By the
Seifert—van Kampen theorem and induction,

7T1(U @] V) = 7T1(U) *ﬂ-l(Umv) 7T1(V) = Z*S *{1} Z*t = Z*T.
If the points happen to be on a vertical line, then they are not on a hori-

zontal line (since we assume r > 1) and one can argue as above using sets
of the form U’ = {(z,y) € R? | y > a} and V' = {(z,y) € R? | y < b}.



