
Topology MM7052, HT22.

Solutions to Exam 2022-12-15

(1) (a) ∅ and Z are clearly open. If {Ui}i∈I is a family of open sets, then ∪iUi
is open because n ∈ ∪iUi ⇔ n ∈ Ui for some i ∈ I ⇔ −n ∈ Ui for some
i ∈ I ⇔ −n ∈ ∪iUi. Similarly, n ∈ ∩iUi ⇔ −n ∈ ∩iUi (regardless of
whether or not I is finite).

(b) Not Hausdorff: if U, V are open sets such that −1 ∈ U and 1 ∈ V then
1 ∈ U so U ∩ V 6= ∅.
Not compact: Z =

⋃
n∈Z{−n, n} is an open cover that lacks a finite

subcover.
Second countable: B = {{−n, n} | n ∈ Z} is a countable basis for the
topology because each {−n, n} is open and every open set U can be
written as U =

⋃
n∈U{−n, n}.

(2) (a) p|A : A→ p(A) is clearly surjective so we need to check that

U ⊆ p(A) open⇔ (p|A)−1(U) ⊆ A open.

⇒: this is just saying that p|A is continuous, which is clear as it is
obtained from p by restricting the domain and codomain.
⇐: Since A is open in X by assumption, (p|A)−1(U) is also open in
X. Since p is an open map, it follows that U = p((p|A)−1(U)) is open
in Y and hence also in p(A).

(b) For example, let X = {a, b, c} with open sets ∅, {a}, {a, b}, {a, b, c},
let Y = {x, y} with open sets ∅, {x, y}, define p : X → Y by p(a) =
p(c) = x, p(b) = y, and let A = {a, b}. Then p is a quotient map but
p|A : A→ p(A) is not.

(3) (a) If A ⊆ R contains two points a, b ∈ A where a < b, then (−∞, a] ∩ A
and (a,∞) ∩ A are two non-empty disjoint open subsets of A whose
union is A, showing A is disconnected. (Note that (−∞, a] and (a,∞)
are open because they can be written as the union of all sets of the
form (x, a] and (a, x], respectively, for x ∈ R.)

(b) Totally disconnected: Let A ⊆ C and suppose f, g ∈ A with f 6= g.
This means that f(n) 6= g(n) for some n ∈ Z, so f(n) = 0 and g(n) = 1
or f(n) = 1 and g(n) = 0. Either way, ev−1n (0) ∩ A and ev−1n (1) ∩ A
are two non-empty disjoint open subsets of A whose union is A, so A
is disconnected.
Not discrete: the topology has a countable basis,{
ev−1n1

(A1) ∩ . . . ∩ ev−1nk
(Ak) | Ai ⊆ {0, 1}, ni ∈ Z, k ≥ 1

}
,

but the discrete topology does not as {0, 1}Z is uncountable.

(4) We may present the torus as T = I × I/ ∼ where (0, t) ∼ (1, t) and
(t, 0) ∼ (t, 1) for all t ∈ I = [0, 1]. The action of C2 on T is induced by
the action on I × I that flips the coordinates. Consider the triangle ∆ =
{(x, y) ∈ I × I | x ≤ y}. The map q : ∆→ T/C2, defined as the composite
of the inclusion ∆→ I×I followed by the quotient maps I×I → T → T/C2,
is a continuous surjective map from a compact space to a Hausdorff space
(the orbit space T/C2 is Hausdorff since C2 is finite and T is Hausdorff),
so it is a quotient map by the closed map lemma. Hence, it induces a
homeomorphism

h : ∆/ ∼ → T/C2,
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where p ∼ p′ if and only if q(p) = q(p′). The non-trivial identifications made
by q are (0, t) ∼ (t, 1) for t ∈ I. This is exactly the polygonal presentation
to the left in the figure below. The rest of the figure indicates a sequence of
elementary transformations that transforms this to a standard presentation
for the Möbius band.

(5) By the lifting criterion, a map f : RPn → S1 lifts to the universal cover

R
p

��
RPn

f //

f̃
<<

S1

if and only if f∗(π1(RPn)) is the trivial subgroup of π1(S1) ∼= Z. For n ≥ 2
we have that π1(RPn) ∼= Z/2Z. This can be seen by identifying RPn with
the orbit space associated to the antipodal action of Z/2Z on Sn, using that
the latter is a covering space action and that Sn is simply connected for
n ≥ 2. Since there are no non-zero homomorphisms from Z/2Z to Z, this
implies that f∗(π1(RPn)) must be the trivial subgroup of π1(S1), so a lift

f̃ exists in this case. Since R is contractible, f̃ is homotopic to a constant

map. This implies that f = p ◦ f̃ is homotopic to a constant map.

(6) Let X denote the complement of the three coordinate axes in R3. The
inclusion i : S2 ∩ X → X is a homotopy equivalence. Indeed, if we define
r : X → S2 ∩ X by r(x) = x/|x| and H : X × [0, 1] → X by the formula
H(x, t) = (1− t)x+ tx/|x|, then ri = 1 and H is a homotopy from 1X to ir.
Next, observe that S2∩X is S2 with six points removed (namely (±1, 0, 0),
(0,±1, 0), and (0, 0,±1)). By stereographic projection from (0, 0, 1) to the
xy-plane, S2 ∩X is homeomorphic to R2 with five points removed (namely
(±1, 0), (0,±1) and (0, 0)). The fundamental group of R2 \ {p1, . . . , pr},
where p1, . . . , pr are distinct points in R2, is isomorphic to the r-fold free
product Z∗r, i.e., the free group on r generators. This can be shown by
induction on r. The base case r = 1 follows from R2 \{p1} ∼= R2 \{0} ' S1

and the fact that π1(S1) ∼= Z. Induction step: Let r > 1. If the points
p1, . . . , pr are not on a vertical line, then we can find real numbers a < b
such that both U ′ = {(x, y) ∈ R2 | x > a} and V ′ = {(x, y) ∈ R2 | x < b}
contain at least one of the points pi but U ′∩V ′ contains none of the points.
Setting U = U ′ ∩ (R2 \ {p1, . . . , pr}) and V = V ′ ∩ (R2 \ {p1, . . . , pr}), we
get that U ∪V = R2 \{p1 . . . , pr}, U ∼= R2 \{s points}, V ∼= R2 \{t points},
where s+ t = r and s, t < r, and U ∩V = (a, b)×R is contractible. By the
Seifert–van Kampen theorem and induction,

π1(U ∪ V ) ∼= π1(U) ∗π1(U∩V ) π1(V ) ∼= Z∗s ∗{1} Z∗t ∼= Z∗r.
If the points happen to be on a vertical line, then they are not on a hori-
zontal line (since we assume r > 1) and one can argue as above using sets
of the form U ′ = {(x, y) ∈ R2 | y > a} and V ′ = {(x, y) ∈ R2 | y < b}.


