Topology MM7052, HT22.

Solutions to Exam 2022-12-15
(1) (a) \emptyset and \mathbb{Z} are clearly open. If $\left\{U_{i}\right\}_{i \in I}$ is a family of open sets, then $\cup_{i} U_{i}$ is open because $n \in \cup_{i} U_{i} \Leftrightarrow n \in U_{i}$ for some $i \in I \Leftrightarrow-n \in U_{i}$ for some $i \in I \Leftrightarrow-n \in \cup_{i} U_{i}$. Similarly, $n \in \cap_{i} U_{i} \Leftrightarrow-n \in \cap_{i} U_{i}$ (regardless of whether or not I is finite).
(b) Not Hausdorff: if U, V are open sets such that $-1 \in U$ and $1 \in V$ then $1 \in U$ so $U \cap V \neq \emptyset$.
Not compact: $\mathbb{Z}=\bigcup_{n \in \mathbb{Z}}\{-n, n\}$ is an open cover that lacks a finite subcover.
Second countable: $\mathcal{B}=\{\{-n, n\} \mid n \in \mathbb{Z}\}$ is a countable basis for the topology because each $\{-n, n\}$ is open and every open set U can be written as $U=\bigcup_{n \in U}\{-n, n\}$.
(2) (a) $\left.p\right|_{A}: A \rightarrow p(A)$ is clearly surjective so we need to check that

$$
U \subseteq p(A) \text { open } \Leftrightarrow\left(\left.p\right|_{A}\right)^{-1}(U) \subseteq A \text { open. }
$$

\Rightarrow : this is just saying that $\left.p\right|_{A}$ is continuous, which is clear as it is obtained from p by restricting the domain and codomain.
\Leftarrow : Since A is open in X by assumption, $\left(\left.p\right|_{A}\right)^{-1}(U)$ is also open in X. Since p is an open map, it follows that $U=p\left(\left(\left.p\right|_{A}\right)^{-1}(U)\right)$ is open in Y and hence also in $p(A)$.
(b) For example, let $X=\{a, b, c\}$ with open sets $\emptyset,\{a\},\{a, b\},\{a, b, c\}$, let $Y=\{x, y\}$ with open sets $\emptyset,\{x, y\}$, define $p: X \rightarrow Y$ by $p(a)=$ $p(c)=x, p(b)=y$, and let $A=\{a, b\}$. Then p is a quotient map but $\left.p\right|_{A}: A \rightarrow p(A)$ is not.
(3) (a) If $A \subseteq \mathbb{R}$ contains two points $a, b \in A$ where $a<b$, then $(-\infty, a] \cap A$ and $(a, \infty) \cap A$ are two non-empty disjoint open subsets of A whose union is A, showing A is disconnected. (Note that $(-\infty, a]$ and (a, ∞) are open because they can be written as the union of all sets of the form ($x, a]$ and $(a, x]$, respectively, for $x \in \mathbb{R}$.)
(b) Totally disconnected: Let $A \subseteq C$ and suppose $f, g \in A$ with $f \neq g$. This means that $f(n) \neq g(n)$ for some $n \in \mathbb{Z}$, so $f(n)=0$ and $g(n)=1$ or $f(n)=1$ and $g(n)=0$. Either way, $e v_{n}^{-1}(0) \cap A$ and $e v_{n}^{-1}(1) \cap A$ are two non-empty disjoint open subsets of A whose union is A, so A is disconnected.
Not discrete: the topology has a countable basis,
$\left\{e v_{n_{1}}^{-1}\left(A_{1}\right) \cap \ldots \cap e v_{n_{k}}^{-1}\left(A_{k}\right) \mid A_{i} \subseteq\{0,1\}, n_{i} \in \mathbb{Z}, k \geq 1\right\}$,
but the discrete topology does not as $\{0,1\}^{\mathbb{Z}}$ is uncountable.
(4) We may present the torus as $T=I \times I / \sim$ where $(0, t) \sim(1, t)$ and $(t, 0) \sim(t, 1)$ for all $t \in I=[0,1]$. The action of C_{2} on T is induced by the action on $I \times I$ that flips the coordinates. Consider the triangle $\Delta=$ $\{(x, y) \in I \times I \mid x \leq y\}$. The map $q: \Delta \rightarrow T / C_{2}$, defined as the composite of the inclusion $\Delta \rightarrow I \times I$ followed by the quotient maps $I \times I \rightarrow T \rightarrow T / C_{2}$, is a continuous surjective map from a compact space to a Hausdorff space (the orbit space T / C_{2} is Hausdorff since C_{2} is finite and T is Hausdorff), so it is a quotient map by the closed map lemma. Hence, it induces a homeomorphism

$$
h: \Delta / \sim \rightarrow T / C_{2},
$$

where $p \sim p^{\prime}$ if and only if $q(p)=q\left(p^{\prime}\right)$. The non-trivial identifications made by q are $(0, t) \sim(t, 1)$ for $t \in I$. This is exactly the polygonal presentation to the left in the figure below. The rest of the figure indicates a sequence of elementary transformations that transforms this to a standard presentation for the Möbius band.

(5) By the lifting criterion, a map $f: \mathbb{R} \mathrm{P}^{n} \rightarrow S^{1}$ lifts to the universal cover

if and only if $f_{*}\left(\pi_{1}\left(\mathbb{R P}^{n}\right)\right)$ is the trivial subgroup of $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$. For $n \geq 2$ we have that $\pi_{1}\left(\mathbb{R P}^{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$. This can be seen by identifying $\mathbb{R P}^{n}$ with the orbit space associated to the antipodal action of $\mathbb{Z} / 2 \mathbb{Z}$ on S^{n}, using that the latter is a covering space action and that S^{n} is simply connected for $n \geq 2$. Since there are no non-zero homomorphisms from $\mathbb{Z} / 2 \mathbb{Z}$ to \mathbb{Z}, this implies that $f_{*}\left(\pi_{1}\left(\mathbb{R} P^{n}\right)\right)$ must be the trivial subgroup of $\pi_{1}\left(S^{1}\right)$, so a lift \tilde{f} exists in this case. Since \mathbb{R} is contractible, \tilde{f} is homotopic to a constant map. This implies that $f=p \circ \widetilde{f}$ is homotopic to a constant map.
(6) Let X denote the complement of the three coordinate axes in \mathbb{R}^{3}. The inclusion $i: S^{2} \cap X \rightarrow X$ is a homotopy equivalence. Indeed, if we define $r: X \rightarrow S^{2} \cap X$ by $r(x)=x /|x|$ and $H: X \times[0,1] \rightarrow X$ by the formula $H(x, t)=(1-t) x+t x /|x|$, then $r i=1$ and H is a homotopy from 1_{X} to $i r$. Next, observe that $S^{2} \cap X$ is S^{2} with six points removed (namely ($\pm 1,0,0$), $(0, \pm 1,0)$, and $(0,0, \pm 1))$. By stereographic projection from $(0,0,1)$ to the $x y$-plane, $S^{2} \cap X$ is homeomorphic to \mathbb{R}^{2} with five points removed (namely $(\pm 1,0),(0, \pm 1)$ and $(0,0))$. The fundamental group of $\mathbb{R}^{2} \backslash\left\{p_{1}, \ldots, p_{r}\right\}$, where p_{1}, \ldots, p_{r} are distinct points in \mathbb{R}^{2}, is isomorphic to the r-fold free product $\mathbb{Z}^{* r}$, i.e., the free group on r generators. This can be shown by induction on r. The base case $r=1$ follows from $\mathbb{R}^{2} \backslash\left\{p_{1}\right\} \cong \mathbb{R}^{2} \backslash\{0\} \simeq S^{1}$ and the fact that $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$. Induction step: Let $r>1$. If the points p_{1}, \ldots, p_{r} are not on a vertical line, then we can find real numbers $a<b$ such that both $U^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid x>a\right\}$ and $V^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid x<b\right\}$ contain at least one of the points p_{i} but $U^{\prime} \cap V^{\prime}$ contains none of the points. Setting $U=U^{\prime} \cap\left(\mathbb{R}^{2} \backslash\left\{p_{1}, \ldots, p_{r}\right\}\right)$ and $V=V^{\prime} \cap\left(\mathbb{R}^{2} \backslash\left\{p_{1}, \ldots, p_{r}\right\}\right)$, we get that $U \cup V=\mathbb{R}^{2} \backslash\left\{p_{1} \ldots, p_{r}\right\}, U \cong \mathbb{R}^{2} \backslash\{s$ points $\}, V \cong \mathbb{R}^{2} \backslash\{t$ points $\}$, where $s+t=r$ and $s, t<r$, and $U \cap V=(a, b) \times \mathbb{R}$ is contractible. By the Seifert-van Kampen theorem and induction,

$$
\pi_{1}(U \cup V) \cong \pi_{1}(U) *_{\pi_{1}(U \cap V)} \pi_{1}(V) \cong \mathbb{Z}^{* s} *_{\{1\}} \mathbb{Z}^{* t} \cong \mathbb{Z}^{* r}
$$

If the points happen to be on a vertical line, then they are not on a horizontal line (since we assume $r>1$) and one can argue as above using sets of the form $U^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>a\right\}$ and $V^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid y<b\right\}$.

