Tentamensskrivning i Topologi, MM7052 7.5 hp 2022–12–15

(1) Let \mathbb{Z} denote the set of integers. Declare a subset $U \subseteq \mathbb{Z}$ to be open if

$$n \in U \Leftrightarrow -n \in U$$

for all $n \in \mathbb{Z}$.

- (a) Show that this defines a topology on \mathbb{Z} . (2p)
- (b) Is Z Hausdorff in this topology? Compact? Second countable? Motivate your answers. (3p)
- (2) Let $p: X \to Y$ be a quotient map and let $A \subseteq X$ be a subspace.
 - (a) Show that if A is open in X and if p is an open map, then the restriction $p|_A \colon A \to p(A)$ is a quotient map. (3p)
 - (b) Give an example to show that $p|_A \colon A \to p(A)$ is not a quotient map in general. (2p)
- (3) A topological space X is called *totally disconnected* if the only connected subsets are the singletons $\{x\}$ for $x \in X$.
 - (a) Prove that the real line \mathbb{R} with the topology defined by the basis (a, b] for a < b is totally disconnected. (2p)
 - (b) Consider the space $C = \{0,1\}^{\mathbb{Z}}$ of functions $f: \mathbb{Z} \to \{0,1\}$ equipped with the coarsest topology for which all evaluation maps

 $ev_n: \{0,1\}^{\mathbb{Z}} \to \{0,1\}, \quad ev_n(f) = f(n),$

are continuous, where $\{0, 1\}$ is given the discrete topology. Show that C is totally disconnected but not discrete. (3p)

(4) There is an action of the cyclic group C_2 of order 2 on the torus $T = S^1 \times S^1$ defined by letting the non-trivial element act by

 $(x, y) \mapsto (y, x).$

- Show that the orbit space T/C_2 is homeomorphic to the Möbius band. (5p) (Hint: You may find it useful to argue using polygonal presentations.)
- (5) Show that every map $\mathbb{R}P^n \to S^1$ is homotopic to a constant map if $n \ge 2$. (5p)

(Hint: Use covering space theory.)

(6) Compute the fundamental group of the complement of the three coordinate axes in ℝ³. (5p)