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1. (i) If S is a convex set, the intersection of S with a line is convex, since the intersection of two
convex sets is convex. Conversely, suppose the intersection of S with any line is convex.
Take any two distinct points x1 and x2 in S. The intersection of S with the line through x1
and x2 is convex. Therefore convex combinations of x1 and x2 belong to the intersection,
thus also to S.

(ii) See Solutions manual for BSS Problem 2.53. However S is not a polyhedron. And its
extreme points are the set ∂S.

(iii) Since 〈y, x〉 is a convex function for y ∈ X, SX(x) is convex by the property of suprium of
convex funtions.

(iv) Obviously SC(x) = SD(x) if C = D.
Next we show D ⊆ C. Suppose there is a point y in D, z 6∈ C. Since C is closed, y can
be strictly separated from C. In other words, there exists an x 6= 0 with 〈x, y〉 > b and
〈x, z〉 < b,∀z ∈ C, implying

sup
z∈C
〈x, z〉 ≤ b < 〈x, y〉 ≤ sup

z∈D
〈x, z〉,

which implies that SC(x) 6= SD(x). The proof of the other direction is similar.

(v) See Example 1 in lecture notes Day 13. 13 p

2. See BSS Example 4.2.10.
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3. Note there are several ways to find a dual problem. We provide one here. Let yi = Aix + bi.
Then we have an equality constrained problem. The Lagrange function

L(x, λ1, ..., λN ) =

N∑
i=1

‖yi‖2 +
1

2
‖x− x0‖22 +

N∑
i=1

λti(Aix+ bi − yi)

is to be minimized over x and yi, i = 1, ..., N . Clearly this minimization problem can be split
to minimizing over x and yi separately. ¿For fixed i we find

inf
yi

(‖yi‖2 + λtiyi =

{
0 ‖λi‖2 ≤ 1
−∞ otherwise

whose reasoning is as follows: if ‖λi‖2 ≤ 1, which together with the Cauchy-Schwarz, yields
that ‖yi‖2 + λtiyi ≥ 0 So the minimum is reached at yi = 0. If ‖λi‖2 > 1, we see that the
function is unbounded since yi = −tλi tends to −∞ as t→∞.

Notice that the function 1
2‖x − x0‖22 +

∑N
i=1 λ

t
iAix is a convex function, the necessary and

sufficient for optimality is its gradient equal to 0 which is x = x0 +
∑N

i=1A
t
iλi. Evaluating the

Lagrange function at the optmia just found we get the dual objective function

φ(λ1, ..., λN ) =

{∑N
i=1(Aix0 + bi)

tλi − 1
2‖
∑N

i=1A
t
iλi‖22 ‖λi‖2 ≤ 1, i = 1, ..., N

−∞ otherwise.

So the dual problem is

maximize
N∑
i=1

(Aix0 + bi)
tλi −

1

2

∥∥∥∥∥
N∑
i=1

Atiλi

∥∥∥∥∥
2

2

subject to ‖λi‖2 ≤ 1, i = 1, ..., N.
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4. See Solutions Manual to BSS Exercise 4.10
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5. It is not an LP problem but a convex program problem because it is a maximum of function
convections, and is equivalent to the LP: Minimize t subject to atix+ bi ≤ t, i = 1, ...,m.

12 p

You have finished the exam if your homework ph ≥ 24. Continue otherwise.

6. Let ati be the rows of the matrix A and introduce y = Ax+ b. Then (GP) is equivalent to

minimize log

(
m∑
i=1

eyi

)
subject to y = Ax+ b

Now we determine the dual objective function:

g(λ) = min
x,y

(
log

(
m∑
i=1

eyi

)
+ λt(Ax+ b− y)

)
= btλ+ min

x
λtAx+ min

y

(
log

(
m∑
i=1

eyi

)
− λty

)

Now minx λ
tAx =

{
0 Atλ = 0
−∞ otherewise

.

Note that log
∑m

i=1 e
yi is a convex function (prove it!) and so is log (

∑m
i=1 e

yi)− λty. Then the
equations

eyk∑m
i=1 e

yi
= λk, k = 1, ...,m

is necessary and sufficient for optimality. Note also that these equations are solvable if and only if
λ ≥ 0 and

∑m
i=1 λi = 1. (Prove it!) By substituting the expression of λk into log (

∑m
i=1 e

yi)−λty
we get

min
y

(
log

(
m∑
i=1

eyi

)
− λty

)
=

{
−
∑m

i=1 λi log λi λ ≥ 0,
∑m

i=1 λi = 1
−∞ otherwise

.

Hence the dual objective function is

g(λ) =

{
btλ−

∑m
i=1 λi log λi Atλ = 0, λ ≥ 0,

∑m
i=1 λi = 1

−∞ otherwise

and thus the resulting dual problem is

maximize btλ−
m∑
i=1

λi log λi

subject to Atλ = 0, λ ≥ 0,

m∑
i=1

λi = 1

As shown in Problem 5 (PWL) is equivalent to the LP problem: Minimize t subject to atix+bi ≤
t, i = 1, ...,m. Its dual is

maximize btλ

subject to Atλ = 0, λ ≥ 0,

m∑
i=1

λi = 1

which is identical to the dual of (PWL) which is obtained as follows. The dual objective function
is, following the standard procedure,

φ(λ) = inf
x,y

(
max

i=1,...,m
yi +

m∑
i=1

λi(a
t
ix+ bi − yi)

)
.



To simplify we first observe that the infimum over x is finite only if
∑m

i=1 λiai = 0. To minimize
over y we note that

inf
y

(
max
i
yi − λty

)
=

{
0 λ ≥ 0,

∑
i λi = 1

−∞ otherwise

(Prove it!). So

φ(λ) =

{
btλ

∑m
i=1 λiai = 0, λ ≥ 0,

∑m
i=1 λi = 1

−∞ otherwise.

Hence the resulting dual problem is

mazimize btλ

subject to Atλ = 0,
m∑
i=1

λi = 1, λ ≥ 0.

Assume now that λ∗ is dual optimal for dual (GP), then λ∗ is also feasible for the dual of
(PWP), with objective value

btλ = p∗gp +
m∑
i=1

λ∗i log λ∗i .

This yields

p∗pwl ≥ pgp +

m∑
i=1

λ∗i log λ∗i ≥ p∗gp − logm

The last estimate follows from

inf∑
i λi

m∑
i=1

λi log λi = − logm.

On the other hand we also have

max
i

(atix+ bi) ≤ log
∑

exp(atix+ bi), ∀x.

Therefore p∗pwl ≤ p∗gp. Together with the lower bound we get 0 ≤ p∗gp − p∗pwl ≤ logm. 12 p

You have finished the exam if your homework 23 ≥ ph ≥ 16. Continue otherwise.

7. (i) It follows by the Jensen’s inequality by taking logarithms on G(x).

(ii) First we show that G(x) is concave on Rn++.

A straightforward (a bit tricky) calculation gives the Hessian ∇2G(x) with components

∂2G(x)

∂x2k
= −(n− 1)

G(x)

n2x2k
,

∂2G(x)

∂xk∂xl
=

G(x)

n2xkxl
, for k 6= l.

We want to show that this matrix is negative semi-definite. Take any v 6= 0 in Rn we have

vt∇2G(x)v = −G(x)

n2

n n∑
i=1

v2i
x2i
−

(
n∑
i=1

vi
xi

)2
 ≤ 0.

The last inequality follows from the Cauchy-Schwarz inequality for the vectors a = (1, ..., 1)t

and b = ( v1x1 , ...,
vn
xn

)t.

Since G(x) is concave and A(x) is convex on Rn++. Then A(x)−G(x) is a convex function
thus its level set is a convex set, implying that C = {x ∈ Rn++ : G(x) ≥ A(x)} is convex.
And this set is a cone since for any point x ∈ C and any positive number α, G(αx) =
αG(x) ≥ αA(x) = A(αx) and thus αx ∈ C.
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You have finished the exam if your homework 15 ≥ ph ≥ 8. Continue otherwise.

8. (i) By adding constant term 1
2‖c‖

2
2 to the objective function we have an equivalent optimiza-

tion problem: Minimize 1
2‖c + x‖22 subject to Ax = 0. So the optimal solution is the

projection of −c on to the null space of A, which is

x∗ = −(I −At(AAt)−1A)c

(ii) By changing variable y = Q1/2(x − x̄) we can write the optimization problem as follows:

Minimize 1
2‖y‖

2
2+(Q−1/2c)ty subject to AQ−1/2y = 0. Now apply the result in the previous

problem we get

y∗ = −(I −Q−1/2At(AQ−1At)−1AQ−1/2)Q−1/2c
which gives

x∗ = x̄−Q−1(c−Atλ)

where λ = (AQ−1At)−1AQ−1c.
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