MATEMATISKA INSTITUTIONEN
 STOCKHOLMS UNIVERSITET
 Avd. Matematik

Skiss of the solutions to Exam 2023-01-10

1. (i) If S is a convex set, the intersection of S with a line is convex, since the intersection of two convex sets is convex. Conversely, suppose the intersection of S with any line is convex. Take any two distinct points x_{1} and x_{2} in S. The intersection of S with the line through x_{1} and x_{2} is convex. Therefore convex combinations of x_{1} and x_{2} belong to the intersection, thus also to S.
(ii) See Solutions manual for BSS Problem 2.53. However S is not a polyhedron. And its extreme points are the set ∂S.
(iii) Since $\langle y, x\rangle$ is a convex function for $y \in X, S_{X}(x)$ is convex by the property of suprium of convex funtions.
(iv) Obviously $S_{C}(x)=S_{D}(x)$ if $C=D$.

Next we show $D \subseteq C$. Suppose there is a point y in $D, z \notin C$. Since C is closed, y can be strictly separated from C. In other words, there exists an $x \neq 0$ with $\langle x, y\rangle>b$ and $\langle x, z\rangle<b, \forall z \in C$, implying

$$
\sup _{z \in C}\langle x, z\rangle \leq b<\langle x, y\rangle \leq \sup _{z \in D}\langle x, z\rangle,
$$

which implies that $S_{C}(x) \neq S_{D}(x)$. The proof of the other direction is similar.
(v) See Example 1 in lecture notes Day 13.
2. See BSS Example 4.2.10.
3. Note there are several ways to find a dual problem. We provide one here. Let $y_{i}=A_{i} x+b_{i}$. Then we have an equality constrained problem. The Lagrange function

$$
L\left(x, \lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i=1}^{N}\left\|y_{i}\right\|_{2}+\frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}+\sum_{i=1}^{N} \lambda_{i}^{t}\left(A_{i} x+b_{i}-y_{i}\right)
$$

is to be minimized over x and $y_{i}, i=1, \ldots, N$. Clearly this minimization problem can be split to minimizing over x and y_{i} separately. ¿For fixed i we find

$$
\inf _{y_{i}}\left(\left\|y_{i}\right\|_{2}+\lambda_{i}^{t} y_{i}= \begin{cases}0 & \left\|\lambda_{i}\right\|_{2} \leq 1 \\ -\infty & \text { otherwise }\end{cases}\right.
$$

whose reasoning is as follows: if $\left\|\lambda_{i}\right\|_{2} \leq 1$, which together with the Cauchy-Schwarz, yields that $\left\|y_{i}\right\|_{2}+\lambda_{i}^{t} y_{i} \geq 0$ So the minimum is reached at $y_{i}=0$. If $\left\|\lambda_{i}\right\|_{2}>1$, we see that the function is unbounded since $y_{i}=-t \lambda_{i}$ tends to $-\infty$ as $t \rightarrow \infty$.
Notice that the function $\frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}+\sum_{i=1}^{N} \lambda_{i}^{t} A_{i} x$ is a convex function, the necessary and sufficient for optimality is its gradient equal to 0 which is $x=x_{0}+\sum_{i=1}^{N} A_{i}^{t} \lambda_{i}$. Evaluating the Lagrange function at the optmia just found we get the dual objective function

$$
\phi\left(\lambda_{1}, \ldots, \lambda_{N}\right)= \begin{cases}\sum_{i=1}^{N}\left(A_{i} x_{0}+b_{i}\right)^{t} \lambda_{i}-\frac{1}{2}\left\|\sum_{i=1}^{N} A_{i}^{t} \lambda_{i}\right\|_{2}^{2} & \left\|\lambda_{i}\right\|_{2} \leq 1, i=1, \ldots, N \\ -\infty & \text { otherwise } .\end{cases}
$$

So the dual problem is

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i=1}^{N}\left(A_{i} x_{0}+b_{i}\right)^{t} \lambda_{i}-\frac{1}{2}\left\|\sum_{i=1}^{N} A_{i}^{t} \lambda_{i}\right\|_{2}^{2} \\
\text { subject to } & \left\|\lambda_{i}\right\|_{2} \leq 1, i=1, \ldots, N
\end{array}
$$

4. See Solutions Manual to BSS Exercise 4.10
5. It is not an LP problem but a convex program problem because it is a maximum of function convections, and is equivalent to the LP: Minimize t subject to $a_{i}^{t} x+b_{i} \leq t, i=1, \ldots, m$.

You have finished the exam if your homework $p_{h} \geq 24$. Continue otherwise.
6. Let a_{i}^{t} be the rows of the matrix A and introduce $y=A x+b$. Then (GP) is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & \log \left(\sum_{i=1}^{m} e^{y_{i}}\right) \\
\text { subject to } & y=A x+b
\end{aligned}
$$

Now we determine the dual objective function:
$g(\lambda)=\min _{x, y}\left(\log \left(\sum_{i=1}^{m} e^{y_{i}}\right)+\lambda^{t}(A x+b-y)\right)=b^{t} \lambda+\min _{x} \lambda^{t} A x+\min _{y}\left(\log \left(\sum_{i=1}^{m} e^{y_{i}}\right)-\lambda^{t} y\right)$
Now $\min _{x} \lambda^{t} A x=\left\{\begin{array}{ll}0 & A^{t} \lambda=0 \\ -\infty & \text { otherewise }\end{array}\right.$.
Note that $\log \sum_{i=1}^{m} e^{y_{i}}$ is a convex function (prove it!) and so is $\log \left(\sum_{i=1}^{m} e^{y_{i}}\right)-\lambda^{t} y$. Then the equations

$$
\frac{e^{y_{k}}}{\sum_{i=1}^{m} e^{y_{i}}}=\lambda_{k}, k=1, \ldots, m
$$

is necessary and sufficient for optimality. Note also that these equations are solvable if and only if $\lambda \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$. (Prove it!) By substituting the expression of λ_{k} into $\log \left(\sum_{i=1}^{m} e^{y_{i}}\right)-\lambda^{t} y$ we get

$$
\min _{y}\left(\log \left(\sum_{i=1}^{m} e^{y_{i}}\right)-\lambda^{t} y\right)= \begin{cases}-\sum_{i=1}^{m} \lambda_{i} \log \lambda_{i} & \lambda \geq 0, \sum_{i=1}^{m} \lambda_{i}=1 \\ -\infty & \text { otherwise }\end{cases}
$$

Hence the dual objective function is

$$
g(\lambda)= \begin{cases}b^{t} \lambda-\sum_{i=1}^{m} \lambda_{i} \log \lambda_{i} & A^{t} \lambda=0, \lambda \geq 0, \sum_{i=1}^{m} \lambda_{i}=1 \\ -\infty & \text { otherwise }\end{cases}
$$

and thus the resulting dual problem is

$$
\begin{array}{ll}
\operatorname{maximize} & b^{t} \lambda-\sum_{i=1}^{m} \lambda_{i} \log \lambda_{i} \\
\text { subject to } & A^{t} \lambda=0, \lambda \geq 0, \sum_{i=1}^{m} \lambda_{i}=1
\end{array}
$$

As shown in Problem 5 (PWL) is equivalent to the LP problem: Minimize t subject to $a_{i}^{t} x+b_{i} \leq$ $t, i=1, \ldots, m$. Its dual is

$$
\begin{aligned}
\operatorname{maximize} & b^{t} \lambda \\
\text { subject to } & A^{t} \lambda=0, \lambda \geq 0, \sum_{i=1}^{m} \lambda_{i}=1
\end{aligned}
$$

which is identical to the dual of (PWL) which is obtained as follows. The dual objective function is, following the standard procedure,

$$
\phi(\lambda)=\inf _{x, y}\left(\max _{i=1, \ldots, m} y_{i}+\sum_{i=1}^{m} \lambda_{i}\left(a_{i}^{t} x+b_{i}-y_{i}\right)\right) .
$$

To simplify we first observe that the infimum over x is finite only if $\sum_{i=1}^{m} \lambda_{i} a_{i}=0$. To minimize over y we note that

$$
\inf _{y}\left(\max _{i} y_{i}-\lambda^{t} y\right)= \begin{cases}0 & \lambda \geq 0, \sum_{i} \lambda_{i}=1 \\ -\infty & \text { otherwise }\end{cases}
$$

(Prove it!). So

$$
\phi(\lambda)= \begin{cases}b^{t} \lambda & \sum_{i=1}^{m} \lambda_{i} a_{i}=0, \lambda \geq 0, \sum_{i=1}^{m} \lambda_{i}=1 \\ -\infty & \text { otherwise }\end{cases}
$$

Hence the resulting dual problem is

$$
\begin{array}{ll}
\operatorname{mazimize} & b^{t} \lambda \\
\text { subject to } & A^{t} \lambda=0, \sum_{i=1}^{m} \lambda_{i}=1, \lambda \geq 0
\end{array}
$$

Assume now that λ^{*} is dual optimal for dual (GP), then λ^{*} is also feasible for the dual of (PWP), with objective value

$$
b^{t} \lambda=p_{\mathrm{gp}}^{*}+\sum_{i=1}^{m} \lambda_{i}^{*} \log \lambda_{i}^{*}
$$

This yields

$$
p_{\mathrm{pwl}}^{*} \geq p_{\mathrm{gp}}+\sum_{i=1}^{m} \lambda_{i}^{*} \log \lambda_{i}^{*} \geq p_{\mathrm{gp}}^{*}-\log m
$$

The last estimate follows from

$$
\inf _{\sum_{i} \lambda_{i}} \sum_{i=1}^{m} \lambda_{i} \log \lambda_{i}=-\log m
$$

On the other hand we also have

$$
\max _{i}\left(a_{i}^{t} x+b_{i}\right) \leq \log \sum \exp \left(a_{i}^{t} x+b_{i}\right), \forall x
$$

Therefore $p_{\mathrm{pwl}}^{*} \leq p_{\mathrm{gp}}^{*}$. Together with the lower bound we get $0 \leq p_{\mathrm{gp}}^{*}-p_{\mathrm{pwl}}^{*} \leq \log m$.
You have finished the exam if your homework $23 \geq p_{h} \geq 16$. Continue otherwise.
7. (i) It follows by the Jensen's inequality by taking logarithms on $G(x)$.
(ii) First we show that $G(x)$ is concave on \mathbb{R}_{++}^{n}.

A straightforward (a bit tricky) calculation gives the Hessian $\nabla^{2} G(x)$ with components

$$
\frac{\partial^{2} G(x)}{\partial x_{k}^{2}}=-(n-1) \frac{G(x)}{n^{2} x_{k}^{2}}, \quad \frac{\partial^{2} G(x)}{\partial x_{k} \partial x_{l}}=\frac{G(x)}{n^{2} x_{k} x_{l}}, \text { for } k \neq l .
$$

We want to show that this matrix is negative semi-definite. Take any $v \neq 0$ in \mathbb{R}^{n} we have

$$
v^{t} \nabla^{2} G(x) v=-\frac{G(x)}{n^{2}}\left(n \sum_{i=1}^{n} \frac{v_{i}^{2}}{x_{i}^{2}}-\left(\sum_{i=1}^{n} \frac{v_{i}}{x_{i}}\right)^{2}\right) \leq 0
$$

The last inequality follows from the Cauchy-Schwarz inequality for the vectors $a=(1, \ldots, 1)^{t}$ and $b=\left(\frac{v_{1}}{x_{1}}, \ldots, \frac{v_{n}}{x_{n}}\right)^{t}$.
Since $G(x)$ is concave and $A(x)$ is convex on \mathbb{R}_{++}^{n}. Then $A(x)-G(x)$ is a convex function thus its level set is a convex set, implying that $C=\left\{x \in \mathbb{R}_{++}^{n}: G(x) \geq A(x)\right\}$ is convex. And this set is a cone since for any point $x \in C$ and any positive number $\alpha, G(\alpha x)=$ $\alpha G(x) \geq \alpha A(x)=A(\alpha x)$ and thus $\alpha x \in C$.

You have finished the exam if your homework $15 \geq p_{h} \geq 8$. Continue otherwise.
8. (i) By adding constant term $\frac{1}{2}\|c\|_{2}^{2}$ to the objective function we have an equivalent optimization problem: Minimize $\frac{1}{2}\|c+x\|_{2}^{2}$ subject to $A x=0$. So the optimal solution is the projection of $-c$ on to the null space of A, which is

$$
x^{*}=-\left(I-A^{t}\left(A A^{t}\right)^{-1} A\right) c
$$

(ii) By changing variable $y=Q^{1 / 2}(x-\bar{x})$ we can write the optimization problem as follows: Minimize $\frac{1}{2}\|y\|_{2}^{2}+\left(Q^{-1 / 2} c\right)^{t} y$ subject to $A Q^{-1 / 2} y=0$. Now apply the result in the previous problem we get

$$
y^{*}=-\left(I-Q^{-1 / 2} A^{t}\left(A Q^{-1} A^{t}\right)^{-1} A Q^{-1 / 2}\right) Q^{-1 / 2} c
$$

which gives

$$
x^{*}=\bar{x}-Q^{-1}\left(c-A^{t} \lambda\right)
$$

where $\lambda=\left(A Q^{-1} A^{t}\right)^{-1} A Q^{-1} c$.

