You are allowed to bring an A-4 sheet (double sides) with whatever you think is important. You must motivate well your arguments.

1. (i) Show that a set is convex if and only if its intersection with any line is convex.
(ii) Consider the set $S=\left\{x: x_{1}^{2}+x_{2}^{2} \leq 4\right\}$. Represent S as the intersection of a collection of half-spaces. Find the half-spaces explicitly. Is S a polyhedron? Find all extreme points of S.
(iii) Let X be a nonempty bounded subset of \mathbb{R}^{n}. Define a function $S_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $S_{X}(x)=$ $\sup \{\langle y, x\rangle: y \in X\}$. Show that $S_{X}(x)$ is a convex function.
(iv) Assume that C and D are closed convex sets in \mathbb{R}^{n}. Show that $C=D$ if and only if $S_{C}(x)=S_{D}(x)$
(v) Determine $S_{C}(x)$ if $C \subset \mathbb{R}^{n}$ is a cone.
2. Find optimal solution to the following problem: Minimize $-x_{1}$ subject to $x_{2}-\left(1-x_{1}\right)^{3} \leq 0$ and $x_{2} \geq 0$. Do the KKT conditions hold at the optimum?
3. Derive a dual problem for

$$
\operatorname{Minimize} \sum_{i=1}^{N}\left\|A_{i} x+b_{i}\right\|_{2}+\frac{1}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

The problem data are $A_{i} \in \mathbb{R}^{m_{i} \times n}, b_{i} \in \mathbb{R}^{m_{i}}$, and $x_{0} \in \mathbb{R}^{n}$.
4. Consider the optimization problem to minimize $f(x)$ subject to $g_{i}(x) \leq 0$ for $i=1, \ldots m$.
(i) Show that verifying whether a point \bar{x} is a KKT point is equivalent to finding a vector u such that $A^{t} u=c, u \geq 0$ where $A \in \mathbb{R}^{m \times n}$.
(ii) Use this to check whether $\bar{x}=(1,2,5)^{t}$ is a KKT point to the following problem:

$$
\begin{aligned}
\text { Minimize } & 2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+x_{1} x_{3}-x_{1} x_{2}+x_{1}+2 x_{3} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}-x_{3} \leq 0 \\
& x_{1}+x_{2}+2 x_{3} \leq 16 \\
& x_{1}+x_{2} \geq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

5. Consider the piecewise-linear minimization problem: Minimize $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{t} x+b_{i}\right)$ with variable $x \in \mathbb{R}^{n}$. Is it a linear program problem? Is this a convex program problem? Formulate this minimization problem as an LP problem.

You have finished the exam if your homework $p_{h} \geq 24$. Continue otherwise.
6. Consider the piecewise-linear minimization problem in the previous problem, call it (PWL). Suppose we approximate the objective function $f(x)$ by the smooth function

$$
f_{0}(x)=\log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{t} x+b_{i}\right)\right)
$$

and solve the unconstrained problem (GP):

$$
\text { minimize } \log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{t} x+b_{i}\right)\right) .
$$

Find the dual problem as explicit as possible. Next let p_{pwl}^{*} and p_{gp}^{*} be the optimal values of (PWL) and (GP), respectively. Show that $0 \leq p_{\mathrm{gp}}^{*}-p_{\mathrm{pwl}}^{*} \leq \log m$.

You have finished the exam if your homework $23 \geq p_{h} \geq 16$. Continue otherwise.
7. (i) Let $G(x)=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}$ and $A(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ where $x_{i}>0$ for $i=1, \ldots, n$. Show, using the theory developed in this course, $G(x) \leq A(x)$.
(ii) Justify if the set $\left\{x \in \mathbb{R}_{++}^{n}: G(x) \geq A(x)\right\}$ is convex or not. Is this set a cone if we define $0^{\frac{1}{n}}=0$?

You have finished the exam if your homework $15 \geq p_{h} \geq 8$. Continue otherwise.
8. (i) Using the Projection Theorem to find the solution of the quadratic programming problem:

$$
\operatorname{minimize}\left\{\frac{1}{2}\|x\|_{2}^{2}+c^{t} x: A x=0\right\}
$$

where $A \in \mathbb{R}^{m \times n}$ with rank m and $c \in \mathbb{R}^{n}$ are given.
(ii) Solve the following problem

$$
\operatorname{minimize}\left\{\frac{1}{2}(x-\bar{x})^{t} Q(x-\bar{x})+c^{t}(x-\bar{x}): A x=b\right\}
$$

where A and c are as before, and $Q \in \mathbb{S}_{++}^{n}$ and $b \in \mathbb{R}^{m}$ are given.

