Exam: Brownian motion and stochastic differential equations (MT7043), 2023-01-10

Problem 1

(A) See Øksendal ch. 2.1.
(B) See Øksendal ch. 2.1.
(C) See Øksendal ch. 4.3.

Problem 2

(A) Using Itô's formula we find with some calculations that $f\left(t, B_{t}\right):=e^{-\frac{1}{2} t+B_{t}}$ satisfies

$$
\begin{aligned}
d f\left(t, B_{t}\right) & =f_{t}\left(t, B_{t}\right) d t+\frac{1}{2} f_{x x}\left(t, B_{t}\right) d t+f_{x}\left(t, B_{t}\right) d B_{t} \\
& =-\frac{1}{2} f\left(t, B_{t}\right) d t+\frac{1}{2} f\left(t, B_{t}\right) d t+f\left(t, B_{t}\right) d B_{t} \\
& =f\left(t, B_{t}\right) d B_{t}
\end{aligned}
$$

Hence, it is clear that $e^{-\frac{1}{2} t+B_{t}}$ solves the SDE

$$
d X_{t}=X_{t} d B_{t}, \quad X_{0}=1
$$

(B) Using Øksendal Theorem 8.1.1(a) we find that

$$
\begin{cases}u_{t}(t, x) & =\frac{1}{2} u_{x x}(t, x), \quad t>0, x \in \mathbb{R} \\ u(0, x) & =f(x), x \in \mathbb{R}\end{cases}
$$

The above relies on $A_{X} u=L_{X} u$, which can be established using that B_{t} is normally distributed (the question could also have been answered without this observation).

Problem 3

(A) Using Itô's formula we find with some calculations that $f\left(t, B_{t}\right):=B_{t}^{3}-$ $3 t B_{t}$ satisfies

$$
\begin{aligned}
d f\left(t, B_{t}\right) & =f_{t}\left(t, B_{t}\right) d t+\frac{1}{2} f_{x x}\left(t, B_{t}\right) d t+f_{x}\left(t, B_{t}\right) d B_{t} \\
& =-3 B_{t} d t+6 B_{t} \frac{1}{2} d t+\left(3 B_{t}^{2}-3 t\right) d B_{t} \\
& =\left(3 B_{t}^{2}-3 t\right) d B_{t}
\end{aligned}
$$

Hence, our process can be written as an Itô integral and is a martingale (with respect to the filtration generated by $\left.\left(B_{t}\right)\right)$.
(B) Since $X_{t}:=2 Y_{t}=\frac{B_{4 t}}{2}, t \geq 0$ is a Brownian motion (cf. Øksendal p. 19 or Exercise document 2) it holds that (X_{t}) is a martingale (with respect to the filtration generated by $\left(X_{t}\right)$). From this it is directly seen that also $\left(Y_{t}\right)$ is a martingale (with respect to the same filtration).
(C) It is not a Brownian motion, which can be seen by noting that $V\left(\frac{B_{4 t}}{4}\right)=$ $\frac{1}{16} V\left(B_{4 t}\right)=\frac{1}{16} 4 t \neq t$.

Problem 4

Using Itô's formula we find

$$
\begin{aligned}
\mathbb{E}^{x}\left(f\left(B_{s}\right)\right) & =\mathbb{E}^{x}\left(f(x)+\int_{0}^{s} f^{\prime}\left(B_{u}\right) d B_{u}+\int_{0}^{s} \frac{1}{2} f^{\prime \prime}\left(B_{u}\right) d u\right) \\
& =f(x)+\mathbb{E}^{x}\left(\int_{0}^{s} \frac{1}{2} f^{\prime \prime}\left(B_{u}\right) d u\right)
\end{aligned}
$$

Hence, the statement in the problem is true when we define g according to $g(x)=\frac{1}{2} f^{\prime \prime}(x)$.

Note that the Itô integral in the above vanished since it is a martingale; cf. Corollary 3.2.6 (the condition that the process $f^{\prime \prime}\left(B_{u}\right), u \geq 0$ is a member of \mathcal{V} can be directly verified using e.g., that $f \in C_{0}^{2}$.)

Problem 5

(Note that the problem can be solved in different ways). Let $D=\left(-x_{0}, x_{0}\right)$ and $\tau_{D}=\inf \left\{t: X_{t} \notin D\right\}$. In line the examples that we have seen during the course our ansatz boils down to identifying the (candidate) corresponding value function as

$$
J^{\tau_{D}}(x)=\left\{\begin{array}{l}
f(x), x \in\left(-x_{0}, x_{0}\right) \\
|x|, x \in\left(-x_{0}, x_{0}\right)
\end{array}\right.
$$

where f is chosen so that $-r f(x)+L f(x)=0$ (where L is the differential operator corresponding to $\left(B_{t}\right)$, i.e., $\left.L=\frac{1}{2} \frac{d^{2}}{d x^{2}}\right)$ and $x \mapsto J^{\tau_{D}}(x)$ is continuous. This means that $f(x)$ is given by the hint in the question with A and B chosen so that

$$
J^{\tau_{D}}(x)= \begin{cases}x_{0} \frac{e^{x}+e^{-x}}{e^{x_{0}}+e^{-x_{0}}}, & x \in\left(-x_{0}, x_{0}\right) \tag{1}\\ |x|, & x \notin\left(-x_{0}, x_{0}\right) .\end{cases}
$$

(To see the above use the hint, continuity and basic calculations).
Moreover, the optimal value for x_{0} is identified using smooth fit; which in the present case (since $\frac{d}{d x}|x|=1$ for $x>0$ and $\frac{d}{d x}|x|=-1$ for $x<0$) means finding x_{0} so that the two conditions

$$
J^{\tau_{D} \prime}\left(x_{0}\right)=1
$$

$$
J^{\tau_{D}}\left(-x_{0}\right)=-1
$$

are satisfied. Using basic calculations we see that these two conditions are attained by the same value for x_{0} (which is not surprising since our problem is in a sense symmetric around 0) and in particular we find that smooth fit is attained when choosing x_{0} so that

$$
\begin{equation*}
x_{0} \frac{e^{x_{0}}-e^{-x_{0}}}{e^{x_{0}}+e^{-x_{0}}}=1 \tag{2}
\end{equation*}
$$

Our candidate for the optimal solution is hence given by setting x_{0} to be the positive solution to the equation (2) (it is possible to show that this equation has a unique positive solution which is $x_{0} \approx 1.19968$, but this is not required in your solution).

We have thus found a candidate solution for the optimal stopping time to be

$$
\tau_{D}=\inf \left\{t: X_{t} \notin D\right\}
$$

with $D=\left(-x_{0}, x_{0}\right)$, and x_{0} defined as the positive solution to (2). The corresponding optimal value function is hence (1) with x_{0} set to the positive solution to (2). (It can be verified that this is indeed an optimal solution.)

