Solutions for Examination

Categorical Data Analysis, January 13, 2023

Problem 1

a. Since the total number of students is random, a reasonable model is Poisson sampling, where $N_{i j} \sim \operatorname{Po}\left(\mu_{i j}\right)$ are independent and Poisson distributed random variables for $0 \leq i, j \leq 2$, with $N_{i j}$ the number of students providing alternatives i and j to the first two questions. Then $\pi_{i j}=\mu_{i j} / \mu_{++}$is the probability that a randomly chosen student belongs to cell (i, j). The null hypothesis of independence between fantasy and sports watching habits can be phrased as

$$
\begin{equation*}
H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j} \Longleftrightarrow \mu_{i j}=\frac{\mu_{i+} \mu_{+j}}{\mu_{++}} \tag{1}
\end{equation*}
$$

for all i, j, where in the second step we used that $\pi_{i+}=\mu_{i+} / \mu_{++}$.
b. Let $n_{i j}$ be the observed value of $N_{i j}$, and $n=n_{++}=102$ the total number of students. The maximum likelihood estimate of $\mu_{i j}$ under H_{0} is

$$
\hat{\mu}_{i j}=\frac{\hat{\mu}_{i+} \hat{\mu}_{+j}}{\hat{\mu}_{++}}=\frac{\frac{n_{i+}}{n} \cdot \frac{n_{+j}}{n}}{n}=\frac{n_{i+} n_{+j}}{n} .
$$

Inserting all values of $n_{i j}$, we get the following table of fitted expected values $\hat{\mu}_{i j}$:

	Sports (j)			
Fantasy (i)	0	1	2	Total
0	5.167	8.167	3.667	17
1	8.814	13.931	6.255	29
2	17.020	26.902	12.078	56
Total	31	49	22	102

c. The chisquare test statistic is

$$
\begin{align*}
X^{2} & =\sum_{i, j=0}^{2} \frac{\left(n_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}} \\
& =\frac{(3-5.167)^{2}}{5.167}+\frac{(2-8.167)^{2}}{8.167}+\frac{(12-3.667)^{2}}{3.667}+\ldots+\frac{(3-12.078)^{2}}{12.078} \tag{2}\\
& =33.40 \\
& >\chi_{4}^{2}(0.05)=9.49,
\end{align*}
$$

and from this it follows that independence between watching sports and fantacy movies can be rejected at level 0.05 . In the last step of (2) we used that the number of degrees of freedom is $\mathrm{df}=9-5=4$, since there are $3 \times 3=9$ parameters $\mu_{i j}$ of the full model, and 5 parameters (e.g. $\mu_{++}, \pi_{1+}, \pi_{2+}, \pi_{+1}$ and π_{+2}) for the independence model. We can also make use of $\mathrm{df}=(3-1)(3-1)=4$.
d. The number of concordant and discordant pairs are

$$
\begin{aligned}
& C=3(4+17+33+3)+2(7+3)+8(33+3)+14 \cdot 3=521, \\
& D=2(8+20)+12(8+14+20+33)+14 \cdot 20+7(20+33)=1607
\end{aligned}
$$

respectively. Therefore, an estimator of the difference between the fraction of all concordant/discordant pairs that are concordant and discordant, is

$$
\hat{\gamma}=\frac{521-1607}{521+1607}=-0.5103 .
$$

This indicates a negative association between watching fantacy and sports movies.

Problem 2

a. We merge categories 0 and 1 of fantacy and sports into a new level 1 . This gives a condensed 2×2 table with the following cell counts $\tilde{n}_{i j}$:

	Sports (j)		
Fantasy (i)	1	2	Total
1	27	19	46
2	53	3	56
Total	80	22	102

The estimator of the odds ratio

$$
\begin{equation*}
\theta=\frac{\tilde{\mu}_{11} \tilde{\mu}_{22}}{\tilde{\mu}_{12} \tilde{\mu}_{21}} \tag{3}
\end{equation*}
$$

is

$$
\begin{equation*}
\hat{\theta}=\frac{\tilde{n}_{11} \tilde{n}_{22}}{\tilde{n}_{12} \tilde{n}_{21}}=\frac{27 \cdot 3}{19 \cdot 53}=0.0804 \tag{4}
\end{equation*}
$$

indicating quite strongly that watching fantacy and sports movies are negatively correlated.
b. Equations (3)-(4), and a first order Taylor expansion of the logarithmic function around the expected cell counts $\tilde{\mu}_{i j}$ gives

$$
\begin{aligned}
\log (\hat{\theta}) & =\log \tilde{N}_{11}+\log \tilde{N}_{22}-\log \tilde{N}_{12}-\log \tilde{N}_{21} \\
& \approx\left[\log \tilde{\mu}_{11}+\frac{\tilde{N}_{11}-\tilde{\mu}_{11}}{\tilde{\mu}_{11}}\right]+\left[\log \tilde{\mu}_{22}+\frac{\tilde{N}_{22}-\tilde{\mu}_{22}}{\tilde{\mu}_{22}}\right]-\left[\log \tilde{\mu}_{12}+\frac{\tilde{N}_{12}-\tilde{\mu}_{12}}{\tilde{\mu}_{12}}\right]-\left[\log \tilde{\mu}_{21}+\frac{\tilde{N}_{21}-\tilde{\mu}_{21}}{\tilde{\mu}_{21}}\right] \\
& \stackrel{(3)}{=} \log \theta+\frac{\tilde{N}_{11}-\tilde{\mu}_{11}}{\tilde{\mu}_{11}}+\frac{\tilde{N}_{22}-\tilde{\mu}_{22}}{\tilde{\mu}_{22}}-\frac{\tilde{N}_{12}-\tilde{\mu}_{12}}{\tilde{\mu}_{12}}-\frac{\tilde{N}_{21}-\tilde{\mu}_{21}}{\tilde{\mu}_{21}} .
\end{aligned}
$$

Since $\tilde{N}_{i j}$ are independent and Poisson distributed with $E\left(\tilde{N}_{i j}\right)=\operatorname{Var}\left(\tilde{N}_{i j}\right)=\tilde{\mu}_{i j}$ we find that approximately,

$$
\begin{equation*}
\operatorname{Var}[\log (\hat{\theta})]=\sum_{i, j=1}^{2} \frac{\operatorname{Var}\left(\tilde{N}_{i j}\right)}{\tilde{\mu}_{i j}^{2}}=\sum_{i, j=1}^{2} \frac{1}{\tilde{\mu}_{i j}} \tag{5}
\end{equation*}
$$

c. The standard error

$$
\begin{aligned}
\mathrm{SE} & =\sqrt{\widehat{\operatorname{Var}}[\log (\hat{\theta})]} \\
& =\sqrt{\frac{1}{\tilde{n}_{11}}+\frac{1}{\tilde{n}_{12}}+\frac{1}{\tilde{n}_{21}}+\frac{1}{\tilde{n}_{22}}} \\
& =\sqrt{\frac{1}{27}+\frac{1}{19}+\frac{1}{53}+\frac{1}{3}} \\
& =0.6647
\end{aligned}
$$

of $\log (\hat{\theta})$ is obtained by first replacing all $\tilde{\mu}_{i j}$ by estimates $\tilde{n}_{i j}$ in (5), and then taking the square root. An approximate 95% confidence interval for θ is

$$
\begin{equation*}
I=(\exp [\log (\hat{\theta})-1.96 \cdot \mathrm{SE}], \exp [\log (\hat{\theta})+1.96 \cdot \mathrm{SE}])=(0.0219,0.2960) \tag{6}
\end{equation*}
$$

The negative association between fantacy and sports watching is significant, since $1 \notin I$.
d. The accuracy of (6) is quite poor, since it relies on a large sample approximation, and there are only $\tilde{n}_{22}=3$ observations in cell $(2,2)$. But a more exact analysis is unlikely to change the conclusion $1 \neq I$, since the association between wathing fantacy and sports movies is strong.

Problem 3

a. By adding the two partial contingency tables for $Z=0$ and $Z=1$, we get the following marginal 2×2 contingency table $\left\{n_{i j+}\right\}$ for X and Y :

Father's aff status	Son's aff status	
	$Y=0$	$Y=1$
$X=0$	868	49
$X=1$	50	33

From the marginal and the two partial tables we obtain the following estimated marginal and conditional odds ratios:

$$
\begin{aligned}
\hat{\theta}_{X Y} & =(868 \cdot 33) /(49 \cdot 50)=11.691 \\
\hat{\theta}_{X Y(0)} & =(841 \cdot 4) /(27 \cdot 30)=4.153 \\
\hat{\theta}_{X Y(1)} & =(27 \cdot 29) /(22 \cdot 20)=1.779
\end{aligned}
$$

The fact that $\hat{\theta}_{X Y}$ is much larger than the two partial odds ratios indicate strongly that Z is a common risk factor for fathers and sons. Since $\hat{\theta}_{X Y(0)}$ and $\hat{\theta}_{X Y(1)}$ are both larger than 1, this indicates (more weakly) other possible common (genetic or shared environmental) risk factors. Since $\hat{\theta}_{X Y(0)}$ is larger than $\hat{\theta}_{X Y(1)}$, there is possibly a third order interaction between X, Y and Z.
b. The loglinear parametrization of $(X Z, Y Z)$ is

$$
\begin{equation*}
\mu_{i j k}=\exp \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}\right) \tag{7}
\end{equation*}
$$

for $0 \leq i, j, k \leq 1$. Assume that $X=0, Y=0$ and $Z=0$ are chosen as baseline levels. Then those loglinear parameters are put to zero for which at least one index i, j or k equals 0 . The remaining parameters are

$$
\begin{equation*}
\boldsymbol{\beta}=\left(\lambda, \lambda_{1}^{X}, \lambda_{1}^{Y}, \lambda_{1}^{Z}, \lambda_{11}^{X Z}, \lambda_{11}^{Y Z}\right) . \tag{8}
\end{equation*}
$$

c. It follows from (7) that

$$
\begin{equation*}
\mu_{i j k}=A_{k} B_{i k} C_{j k}, \tag{9}
\end{equation*}
$$

with $A_{k}=\exp \left(\lambda+\lambda_{k}^{Z}\right), B_{i k}=\exp \left(\lambda_{i}^{X}+\lambda_{i k}^{X Z}\right)$ and $C_{j k}=\exp \left(\lambda_{j}^{Y}+\lambda_{j k}^{Y Z}\right)$. Then, summing over one of i or j, or over both indeces simultaneously in (9), we find that

$$
\begin{aligned}
\mu_{i+k} & =A_{k} B_{i k} C_{+k}, \\
\mu_{+j k} & =A_{k} B_{+k} C_{j k}, \\
\mu_{++k} & =A_{k} B_{+k} C_{+k} .
\end{aligned}
$$

Consequently,

$$
\frac{\mu_{i+k} \mu_{+j k}}{\mu_{++k}}=\frac{A_{k} B_{i k} C_{+k} \cdot A_{k} B_{+k} C_{j k}}{A_{k} B_{+k} C_{+k}}=A_{k} B_{i k} C_{j k}=\mu_{i j k} .
$$

Alternatively, we may work directly with the cell probabilities $\pi_{i j k}=\mu_{i j k} / \mu_{+++}$. Since X and Y are conditionally independent given Z for model ($X Z, Y Z$), it follows that

$$
\pi_{i j k}=\pi_{++k} \pi_{i j \mid k}=\pi_{++k} \pi_{i+\mid k} \pi_{+j \mid k}=\pi_{++k} \cdot \frac{\pi_{i+k}}{\pi_{++k}} \cdot \frac{\pi_{+j k}}{\pi_{++k}}=\frac{\pi_{i+k} \pi_{+j k}}{\pi_{++k}},
$$

and hence

$$
\mu_{i j k}=\mu_{+++} \pi_{i j k}=\mu_{+++} \cdot \frac{\frac{\mu_{i+k}}{\mu_{++}} \cdot \frac{\mu_{+j k}}{\mu_{++}}}{\frac{\mu_{++k}}{\mu_{+++}}}=\frac{\mu_{i+k} \mu_{+j k}}{\mu_{++k}} .
$$

d. The maximum likelihood estimates

$$
\hat{\mu}_{i j k}=\frac{n_{i+k} n_{+j k}}{n_{++k}}
$$

of the expected cell counts are obtained by replacing $\mu_{i+k}, \mu_{+j k}$ and μ_{++k} by estimates $n_{i+k}, n_{+j k}$ and n_{++k}. From the given marginals of the two partial tables we can read off all $n_{i+k}, n_{+j k}$ and n_{++k}, for instance

$$
\hat{\mu}_{000}=\frac{n_{0+0} n_{+00}}{n_{++0}}=\frac{868 \cdot 871}{902}=838.2 .
$$

Continuing in this way for the other cells (i, j, k), we get the following predicted expected cell counts $\hat{\mu}_{i j k}$:

Genetic variant $Z=0$:

| Father's
 aff status | Son's aff status | | |
| :---: | :---: | :---: | :---: | :---: |
| | $Y=0$ | $Y=1$ | Sum |
| $X=0$ | 838.2 | 29.8 | 868 |
| $X=1$ | 32.8 | 1.17 | 34 |
| Sum | 871 | 31 | 902 |

Genetic variant $Z=1$:

Father's aff status	Son's aff status		
	$Y=0$	$Y=1$	Sum
$X=0$	23.5	25.5	49
$X=1$	23.5	25.5	49
Sum	47	51	98

e. The \log likelihood ratio statistic for testing $(X Z, Y Z)$ against the saturated model $(X Y Z)$, is

$$
\begin{aligned}
G^{2} & =2 \sum_{i j k} n_{i j k} \log \frac{n_{i j k}}{\hat{\mu}_{i j k}} \\
& =2\left(841 \cdot \log \frac{841}{838.2}+\ldots+29 \cdot \log \frac{29}{25.5}\right) \\
& =6.731 \\
& >\chi_{2}^{2}(0.05)=5.99,
\end{aligned}
$$

where in the last step we used that $\mathrm{df}=8-6=2$, since the saturated model has $2 \times 2 \times 2=8$ parameters, and the conditional independence model ($X Z, Y Z$) has 6 parameters according to (8). We thus reject conditional independence between X and Y given Z at level 5%, indicating that there might be other common risk factors for fathers and sons.

Problem 4

a. The loglinear parametrization for $(X Y, X Z, Y Z)$ requires addition of an $X Y$-interaction term compared to (7). This gives

$$
\begin{equation*}
\mu_{i j k}=\exp \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}\right) \tag{10}
\end{equation*}
$$

b. Let $\pi_{i j k}=\mu_{i j k} / \mu_{+++}=P(X=i, Y=j, Z=k)$, so that $\pi_{i+k}=P(X=i, Z=k)$. Using (10) we find that

$$
\begin{aligned}
\operatorname{logit}[P(Y=1 \mid X=i, Z=k)] & =\log [P(Y=1 \mid X=i, Z=k) / P(Y=0 \mid X=i, Z=k)] \\
& =\log \left[\left(\pi_{i 1 k} / \pi_{i+k}\right) /\left(\pi_{i 0 k} / \pi_{i+k}\right)\right] \\
& =\log \left(\pi_{i 1 k} / \pi_{i 0 k}\right) \\
& =\log \left(\mu_{i 1 k} / \mu_{i 0 k}\right) \\
& =\left(\lambda+\lambda_{i}^{X}+\lambda_{1}^{Y}+\lambda_{k}^{Z}+\lambda_{i 1}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{1 k}^{Y Z}\right) \\
& -\left(\lambda+\lambda_{i}^{X}+\lambda_{0}^{Y}+\lambda_{k}^{Z}+\lambda_{i 0}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{0 k}^{Y Z}\right) \\
& =\alpha+\beta_{i}^{X}+\beta_{k}^{Z}
\end{aligned}
$$

where in the last step we used that

$$
\begin{aligned}
\alpha & =\lambda_{1}^{Y}-\lambda_{0}^{Y} \\
\beta_{i}^{X} & =\lambda_{i 1}^{X Y}-\lambda_{i 0}^{X Y} \\
\beta_{k}^{Z} & =\lambda_{1 k}^{Y Z}-\lambda_{0 k}^{Y Z}
\end{aligned}
$$

If $X=0$ and $Z=0$ are chosen as baseline levels, then any loglinear parameter with $i=0$ or $k=0$ among it indeces is zero, which implies $\beta_{0}^{X}=\beta_{0}^{Z}=0$. The only remaining parameters are $\left(\alpha, \beta_{1}^{X}, \beta_{1}^{Z}\right)$.
c. Since there is no third order interaction $X Y Z$ in the model, the conditional odds ratio between X and Y does not depend on the level k of the conditioning variable Z. (In contrast, the conditional odds ratios between X and Y of the saturated model, that are estimated in Problem 3a, depend on the level of Z.) We find that

$$
\begin{aligned}
\log \left(\theta_{X Y}\right) & =\operatorname{logit}[P(Y=1 \mid X=1, Z=k)]-\operatorname{logit}[P(Y=1 \mid X=0, Z=k)] \\
& =\alpha+\beta_{1}^{X}+\beta_{k}^{Z}-\left(\alpha+\beta_{0}^{X}+\beta_{k}^{Z}\right) \\
& =\beta_{1}^{X}-\beta_{0}^{X} \\
& =\beta_{1}^{X} .
\end{aligned}
$$

A Wald type approximate 95% confidence interval for $\log \left(\theta_{X Y}\right)$ is

$$
\begin{aligned}
& \left(\hat{\beta}_{1}^{X}-1.96 \sqrt{\widehat{\operatorname{Var}}\left(\hat{\beta}_{1}^{X}\right)}, \hat{\beta}_{1}^{X}+1.96 \sqrt{\left.\widehat{\operatorname{Var}(} \hat{\beta}_{1}^{X}\right)}\right) \\
= & (0.8347-1.96 \sqrt{0.1255}, 0.8347+1.96 \sqrt{0.1255}) \\
= & (0.1404,1.5290),
\end{aligned}
$$

and the one for $\theta_{X Y}$ is

$$
I=(\exp (0.1404), \exp (1.5290))=(1.15,4.61) .
$$

Since $1 \notin I$, this indicates (weakly) that there are additional common risk factors for the father and son apart from Z.
d. Since

$$
\operatorname{logit}[\pi(0,1)]=\operatorname{logit}[P(Y=1 \mid Z=0, X=1)]=\alpha+\beta_{1}^{X},
$$

we first compute a standard error

$$
\begin{aligned}
\mathrm{SE} & =\sqrt{\widehat{\operatorname{Var}}\left(\hat{\alpha}+\hat{\beta}_{1}^{X}\right)} \\
& =\sqrt{\widehat{\operatorname{Var}}(\hat{\alpha})+2 \widehat{\operatorname{Cov}}\left(\hat{\alpha}, \hat{\beta}_{1}^{X}\right)+\widehat{\operatorname{Var}}\left(\hat{\beta}_{1}^{X}\right)} \\
& =\sqrt{0.0342-2 \cdot 0.0096+0.1255} \\
& =\sqrt{0.1405} \\
& =0.3748,
\end{aligned}
$$

in order to find a Wald type 95% confidence interval

$$
\left(\hat{\alpha}+\hat{\beta}_{1}^{X}-1.96 \cdot \mathrm{SE}, \hat{\alpha}+\hat{\beta}_{1}^{X}+1.96 \cdot \mathrm{SE}\right)=(-3.2816,-1.8125)
$$

for $\operatorname{logit}[\pi(0,1)]$, which we transform to find the confidence interval

$$
\left(\frac{\exp (-3.2816)}{1+\exp (-3.2816)}, \frac{\exp (-1.8215)}{1+\exp (-1.8125)}\right)=(0.036,0.140)
$$

for $\pi(0,1)$.

Problem 5

(a) The likelihood of data $\left\{n_{i k} ; 0 \leq i, k \leq 1\right\}$ is

$$
l=\prod_{i, k=0}^{1} \exp \left(-\mu_{i k}\right) \frac{\mu_{i k}^{n_{i k}}}{n_{i k}!}
$$

and the log likelihood

$$
\begin{equation*}
L=\log (l)=\sum_{i, k=0}^{1}\left[-\mu_{i k}+n_{i k} \log \left(\mu_{i k}\right)\right]+C, \tag{11}
\end{equation*}
$$

where $C=-\sum_{i, k} \log \left(n_{i k}!\right)$ is a constant not depending on the parameters.
(b) There are five parameters $\lambda, \lambda_{0}^{X}, \lambda_{1}^{X}, \lambda_{0}^{Z}, \lambda_{1}^{Z}$ in the given formula for all $\mu_{i k}$, but in order to avoid overparametrization we can only have one marginal parameter for X and one for Z. If $X=0$ and $Z=0$ are both baseline levels, then $\lambda_{0}^{X}=\lambda_{0}^{Z}=0$, and three parameters $\lambda, \lambda_{1}^{X}, \lambda_{1}^{Z}$ remain.
(c) Using (11) and the hint, the likelihood equation for λ is

$$
\begin{equation*}
\frac{\partial L}{\partial \lambda}=\left(n_{00}-\mu_{00}\right)+\left(n_{01}-\mu_{01}\right)+\left(n_{10}-\mu_{10}\right)+\left(n_{11}-\mu_{11}\right) . \tag{12}
\end{equation*}
$$

In order to find the likelihood equations for the other two parameters, we notice that $\partial \mu_{i k} / \partial \lambda_{1}^{X}=\mu_{i k}$ and $\partial \log \left(\mu_{i k}\right) / \partial \lambda_{1}^{X}=1$ if $(i, k)=(1,0)$ or $(1,1)$, whereas both of these partial derivatives are 0 if $(i, k)=(0,0)$ or $(0,1)$, so that

$$
\begin{equation*}
\frac{\partial L}{\partial \lambda_{1}^{X}}=\left(n_{10}-\mu_{10}\right)+\left(n_{11}-\mu_{11}\right)=0 \tag{13}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\frac{\partial L}{\partial \lambda_{1}^{Z}}=\left(n_{01}-\mu_{01}\right)+\left(n_{11}-\mu_{11}\right)=0 . \tag{14}
\end{equation*}
$$

The maximum likelihood estimator $\hat{\boldsymbol{\beta}}$ is found by solving (12)-(14) iteratively with respect to $\boldsymbol{\beta}$, using the fact that all $\mu_{i k}=\mu_{i k}(\boldsymbol{\beta})$ depend on the parameter vector. The time of exposures $t_{i k}$ seem to be absent in (12)-(14), but they enter in $\mu_{i k}$.
(d) The annual premium for a young driver that lives in a rural area, is

$$
\begin{aligned}
\hat{P}_{10} & =110 \cdot \exp \left(\hat{\lambda}+\hat{\lambda}_{1}^{X}+\hat{\lambda}_{0}^{Z}\right) \\
& =110 \cdot \exp \left(\hat{\lambda}+\hat{\lambda}_{1}^{X}\right) \\
& =110 \cdot \exp (-3.10+0.25) \\
& =6.36,
\end{aligned}
$$

or 6360 Swedish crowns.
(e) The elements of the Fisher information matrix are

$$
J_{a b}(\boldsymbol{\beta})=-E\left(\frac{\partial^{2} L(\boldsymbol{\beta})}{\partial \beta_{a} \partial \beta_{b}}\right)
$$

for $1 \leq a, b \leq 3$. Focusing on $a=b=3$, i.e. the diagonal element of $\beta_{3}=\lambda_{1}^{Z}$, it follows by differentiating (14) that

$$
\frac{\partial^{2} L}{\partial^{2} \lambda_{1}^{Z}}=-\frac{\partial \mu_{01}}{\partial \lambda_{1}^{Z}}-\frac{\partial \mu_{11}}{\partial \lambda_{1}^{Z}}=-\mu_{01}-\mu_{11}=E\left(\frac{\partial^{2} L}{\partial^{2} \lambda_{1}^{Z}}\right) \Longrightarrow J_{33}(\boldsymbol{\beta})=\mu_{01}+\mu_{11}
$$

since the second derivative does not depend on data $\left\{n_{i k}\right\}$. Therefore it is constant and equal to its expected value.

