
Topology MM7052, HT22.

Solutions to Exam 2023-01-24

(1) (a) X is open by (i) and ∅ is open by (ii) since I(∅) ⊆ ∅ implies I(∅) = ∅. If
A andB are open, then by (iv) we have I(A∩B) = I(A)∩I(B) = A∩B,
showing A∩B is open. To prove that arbitrary unions of open sets are
open, first note that A ⊆ B implies I(A) ⊆ I(B), because A ⊆ B ⇔
A = A ∩ B ⇒ I(A) = I(A ∩ B) = I(A) ∩ I(B) ⇔ I(A) ⊆ I(B). Now
let {Ai}i is a family of open sets. By (ii) we have I(∪iAi) ⊆ ∪iAi. To
show the reverse inclusion, note that Ai ⊆ ∪iAi implies Ai = I(Ai) ⊆
I(∪iAi) by the above, whence ∪iAi ⊆ I(∪iAi).

(b) Given a topology on X, define I(A) to be the interior of A, i.e., the
union of all open sets contained in A. Then we clearly have that I(A) is
open and that I(A) ⊆ A with equality if and only if A is open. (i), (ii),
and (iii) follow immediately from this. To show (iv), note that A ⊆ B
implies I(A) ⊆ I(B). This in turn implies I(A ∩ B) ⊆ I(A) ∩ I(B).
The reverse inclusion follows from the fact that I(A) ∩ I(B) is open
and contained in A ∩B.

(2) (a) First note that Y is Hausdorff if and only if ∆ = {(y, y) | y ∈ Y } is
a closed subset of Y × Y . (Indeed, that ∆ ⊆ Y × Y is closed means
that each point (x, y) ∈ Y × Y \∆ admits a basic open neighborhood
(x, y) ∈ U × V ⊆ Y × Y \∆, i.e., U, V ⊆ Y are disjoint open subsets
with x ∈ U , y ∈ V .) Next, observe that Γ(f) is the preimage of ∆
under the continuous map f × 1: X × Y → Y × Y .

(b) To show that f is continuous, we will show that f−1(C) ⊆ X is closed
for all closed subsets C ⊆ Y . Note that f−1(C) = p

(
(X ×C)∩ Γ(f)

)
,

where p : X×Y → X is the projection. If C is closed in Y then X×C
is closed in X × Y and hence (X × C) ∩ Γ(f) is closed provided Γ(f)
is closed. Since Y is compact, p is a closed map, so p

(
(X ×C)∩Γ(f)

)
is closed.

(3) (a) Suppose, to get a contradiction, that A is disconnected. This means
that there is a surjective continuous map f from A to the discrete
space {0, 1}. The restriction of f to A ∩ B must be constant since
A ∩ B is connected. We may without loss of generality assume that
f(x) = 0 for all x ∈ A ∩B. Now define F : A ∪B → {0, 1} by

F (x) =

{
f(x), x ∈ A,

0, x ∈ B.
Since A and B are closed and since f agrees with the constant function
with value 0 on the overlap A ∩B, the gluing lemma (Lemma 3.23 in
Lee) guarantees that F is well-defined and continuous. But then F is
a continuous surjective map from A ∪ B to {0, 1}, which contradicts
connectedness of A ∪B. A similar argument shows B is connected.

(b) Take, for example, X = R, A = {0, 1}, B = (0, 1]. Then A∪B = [0, 1]
and A ∩B = {1} are connected but A is not. Here B is not closed.

(4) (a) Define p : C2(S2)→ S2 and i : S2 → C2(S2) by p(x, y) = x and i(x) =
(x,−x). Then pi = 1 and ip is homotopic to 1 via the homotopy
H : C2(S2)× [0, 1]→ C2(S2) defined by

H
(
(x, y), t

)
=

(
x,

ty − (1− t)x
|ty − (1− t)x|

)
.
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To make sure H is well-defined one needs to check that ty−(1−t)x 6= 0
and x 6= (ty − (1 − t)x)/|ty − (1 − t)x| for all t ∈ [0, 1]. If t = 0 or
y = −x one checks this by direct computation. If t 6= 0 and y 6= −x,
it follows because either equality would imply that y is on the line
spanned by x, which can not happen since x and −x are the only two
vectors of unit length on that line.

(b) First, note that the action of C2 on C2(S2) is a covering space action:
For (x, y) ∈ C2(S2), pick open sets U, V ⊆ S2 such that x ∈ U , y ∈ V ,
and U ∩V = ∅ (possible since S2 is Hausdorff). Then U ×V ⊆ C2(S2)
is an open neighborhood of (x, y) and

(U × V ) ∩ g(U × V ) = (U × V ) ∩ (V × U) = ∅,
for the non-trivial element g of C2. Next, note that (a) implies that
C2(S2) is simply connected. It follows that

π1
(
C2(S2)/C2

) ∼= C2.

(5) (a) The space Xn admits a polygonal presentation given by identifying
all edges of an n-gon, oriented counterclockwise. This implies that
π1(Xn) admits the presentation 〈a | an〉, i.e., π1(Xn) is a cyclic group
of order n; we recall briefly the argument discussed in class: Let U ′ ={
z ∈ D2 | |z| < 1

}
and V ′ =

{
z ∈ D2 | |z| > 0

}
, and let U = p(U ′) and

V = p(V ′), where p : D2 → Xn is the quotient map. Then Xn = U ∪V
is an open cover and U, V, U ∩ V are path-connected. The diagram

π1(U)← π1(U ∩ V )→ π1(V )

may be identified with {1} ← Z ·n−→ Z, so the Seifert-Van Kampen
theorem yields π1(Xn) ∼= π1(U)∗π1(U∩V )π1(V ) ∼= Z/nZ. See Theorem
10.16 in Lee for a more detailed argument.

(b) By the classification of covering spaces, there is a one-to-one corre-
spondence between isomorphism classes of covering spaces of Xn and
conjugacy classes of subgroups of π1(Xn). All simply connected cov-
ers are isomorphic and correspond to the conjugacy class of the trivial
subgroup. The trivial cover Xn → Xn corresponds to the conjuguacy
class of the subgroup π1(Xn). Thus, the problem is equivalent to
finding those n for which π1(Xn) has no other conjugacy classes of
subgroups. Since π1(Xn) is cyclic of order n, this happens precisely
when n is a prime number or n = 1, since the cyclic group of order n
has a subgroup of order p for every prime divisor p of n, and a group
of prime order has no subgroups apart from the trivial subgroup and
the whole group.

(c) By the classification of surfaces, every compact surface is homeomor-
phic to S2, #gT 2, or #gRP2, for some g ≥ 1. The abelianizations of
the fundamental groups of these surfaces are given by π1(S2)ab ∼= 0,
π1(#gT 2)ab ∼= Z2g, and π1(#gRP2)ab ∼= Zg−1 × Z/2Z (see Proposi-
tion 10.21 in Lee). The only finite cyclic groups appearing here are
π1(S2)ab = 0 and π1(RP2)ab = Z/2Z. Since π1(Xn) ∼= π1(Xn)ab ∼=
Z/nZ by (a), we can conclude that Xn is not a surface if n 6= 1, 2. The
space X1 is just the disk itself, which is not a surface since points on
the boundary do not have euclidean neighborhoods (X1 is however a
surface with boundary). The space X2 is obtained from the disk by
identifying antipodal points on the boundary, so it is homeomorphic
to RP2. In summary, Xn is a surface if and only if n = 2.


