Topology MM7052, HT22.

Solutions to Exam 2023-01-24
(1) (a) X is open by (i) and \emptyset is open by (ii) since $I(\emptyset) \subseteq \emptyset$ implies $I(\emptyset)=\emptyset$. If A and B are open, then by (iv) we have $I(A \cap B)=I(A) \cap I(B)=A \cap B$, showing $A \cap B$ is open. To prove that arbitrary unions of open sets are open, first note that $A \subseteq B$ implies $I(A) \subseteq I(B)$, because $A \subseteq B \Leftrightarrow$ $A=A \cap B \Rightarrow I(A)=I(A \cap B)=I(A) \cap I(B) \Leftrightarrow I(A) \subseteq I(B)$. Now let $\left\{A_{i}\right\}_{i}$ is a family of open sets. By (ii) we have $I\left(\cup_{i} A_{i}\right) \subseteq \cup_{i} A_{i}$. To show the reverse inclusion, note that $A_{i} \subseteq \cup_{i} A_{i}$ implies $A_{i}=I\left(A_{i}\right) \subseteq$ $I\left(\cup_{i} A_{i}\right)$ by the above, whence $\cup_{i} A_{i} \subseteq I\left(\cup_{i} A_{i}\right)$.
(b) Given a topology on X, define $I(A)$ to be the interior of A, i.e., the union of all open sets contained in A. Then we clearly have that $I(A)$ is open and that $I(A) \subseteq A$ with equality if and only if A is open. (i), (ii), and (iii) follow immediately from this. To show (iv), note that $A \subseteq B$ implies $I(A) \subseteq I(B)$. This in turn implies $I(A \cap B) \subseteq I(A) \cap I(B)$. The reverse inclusion follows from the fact that $I(A) \cap I(B)$ is open and contained in $A \cap B$.
(2) (a) First note that Y is Hausdorff if and only if $\Delta=\{(y, y) \mid y \in Y\}$ is a closed subset of $Y \times Y$. (Indeed, that $\Delta \subseteq Y \times Y$ is closed means that each point $(x, y) \in Y \times Y \backslash \Delta$ admits a basic open neighborhood $(x, y) \in U \times V \subseteq Y \times Y \backslash \Delta$, i.e., $U, V \subseteq Y$ are disjoint open subsets with $x \in U, y \in V$.) Next, observe that $\Gamma(f)$ is the preimage of Δ under the continuous map $f \times 1: X \times Y \rightarrow Y \times Y$.
(b) To show that f is continuous, we will show that $f^{-1}(C) \subseteq X$ is closed for all closed subsets $C \subseteq Y$. Note that $f^{-1}(C)=p((X \times C) \cap \Gamma(f))$, where $p: X \times Y \rightarrow X$ is the projection. If C is closed in Y then $X \times C$ is closed in $X \times Y$ and hence $(X \times C) \cap \Gamma(f)$ is closed provided $\Gamma(f)$ is closed. Since Y is compact, p is a closed map, so $p((X \times C) \cap \Gamma(f))$ is closed.
(3) (a) Suppose, to get a contradiction, that A is disconnected. This means that there is a surjective continuous map f from A to the discrete space $\{0,1\}$. The restriction of f to $A \cap B$ must be constant since $A \cap B$ is connected. We may without loss of generality assume that $f(x)=0$ for all $x \in A \cap B$. Now define $F: A \cup B \rightarrow\{0,1\}$ by

$$
F(x)=\left\{\begin{array}{cl}
f(x), & x \in A \\
0, & x \in B
\end{array}\right.
$$

Since A and B are closed and since f agrees with the constant function with value 0 on the overlap $A \cap B$, the gluing lemma (Lemma 3.23 in Lee) guarantees that F is well-defined and continuous. But then F is a continuous surjective map from $A \cup B$ to $\{0,1\}$, which contradicts connectedness of $A \cup B$. A similar argument shows B is connected.
(b) Take, for example, $X=\mathbb{R}, A=\{0,1\}, B=(0,1]$. Then $A \cup B=[0,1]$ and $A \cap B=\{1\}$ are connected but A is not. Here B is not closed.
(4)
(a) Define $p: \mathfrak{C}_{2}\left(S^{2}\right) \rightarrow S^{2}$ and $i: S^{2} \rightarrow \mathfrak{C}_{2}\left(S^{2}\right)$ by $p(x, y)=x$ and $i(x)=$ $(x,-x)$. Then $p i=1$ and $i p$ is homotopic to 1 via the homotopy $H: \mathfrak{C}_{2}\left(S^{2}\right) \times[0,1] \rightarrow \mathfrak{C}_{2}\left(S^{2}\right)$ defined by

$$
H((x, y), t)=\left(x, \frac{t y-(1-t) x}{|t y-(1-t) x|}\right) .
$$

To make sure H is well-defined one needs to check that $t y-(1-t) x \neq 0$ and $x \neq(t y-(1-t) x) /|t y-(1-t) x|$ for all $t \in[0,1]$. If $t=0$ or $y=-x$ one checks this by direct computation. If $t \neq 0$ and $y \neq-x$, it follows because either equality would imply that y is on the line spanned by x, which can not happen since x and $-x$ are the only two vectors of unit length on that line.
(b) First, note that the action of C_{2} on $\mathfrak{C}_{2}\left(S^{2}\right)$ is a covering space action: For $(x, y) \in \mathfrak{C}_{2}\left(S^{2}\right)$, pick open sets $U, V \subseteq S^{2}$ such that $x \in U, y \in V$, and $U \cap V=\emptyset$ (possible since S^{2} is Hausdorff). Then $U \times V \subseteq \mathfrak{C}_{2}\left(S^{2}\right)$ is an open neighborhood of (x, y) and

$$
(U \times V) \cap g(U \times V)=(U \times V) \cap(V \times U)=\emptyset,
$$

for the non-trivial element g of C_{2}. Next, note that (a) implies that $\mathfrak{C}_{2}\left(S^{2}\right)$ is simply connected. It follows that

$$
\pi_{1}\left(\mathfrak{C}_{2}\left(S^{2}\right) / C_{2}\right) \cong C_{2}
$$

(5) (a) The space X_{n} admits a polygonal presentation given by identifying all edges of an n-gon, oriented counterclockwise. This implies that $\pi_{1}\left(X_{n}\right)$ admits the presentation $\left\langle a \mid a^{n}\right\rangle$, i.e., $\pi_{1}\left(X_{n}\right)$ is a cyclic group of order n; we recall briefly the argument discussed in class: Let $U^{\prime}=$ $\left\{z \in D^{2}| | z \mid<1\right\}$ and $V^{\prime}=\left\{z \in D^{2}| | z \mid>0\right\}$, and let $U=p\left(U^{\prime}\right)$ and $V=p\left(V^{\prime}\right)$, where $p: D^{2} \rightarrow X_{n}$ is the quotient map. Then $X_{n}=U \cup V$ is an open cover and $U, V, U \cap V$ are path-connected. The diagram

$$
\pi_{1}(U) \leftarrow \pi_{1}(U \cap V) \rightarrow \pi_{1}(V)
$$

may be identified with $\{1\} \leftarrow \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z}$, so the Seifert-Van Kampen theorem yields $\pi_{1}\left(X_{n}\right) \cong \pi_{1}(U) *_{\pi_{1}(U \cap V)} \pi_{1}(V) \cong \mathbb{Z} / n \mathbb{Z}$. See Theorem 10.16 in Lee for a more detailed argument.
(b) By the classification of covering spaces, there is a one-to-one correspondence between isomorphism classes of covering spaces of X_{n} and conjugacy classes of subgroups of $\pi_{1}\left(X_{n}\right)$. All simply connected covers are isomorphic and correspond to the conjugacy class of the trivial subgroup. The trivial cover $X_{n} \rightarrow X_{n}$ corresponds to the conjuguacy class of the subgroup $\pi_{1}\left(X_{n}\right)$. Thus, the problem is equivalent to finding those n for which $\pi_{1}\left(X_{n}\right)$ has no other conjugacy classes of subgroups. Since $\pi_{1}\left(X_{n}\right)$ is cyclic of order n, this happens precisely when n is a prime number or $n=1$, since the cyclic group of order n has a subgroup of order p for every prime divisor p of n, and a group of prime order has no subgroups apart from the trivial subgroup and the whole group.
(c) By the classification of surfaces, every compact surface is homeomorphic to $S^{2}, \#^{g} T^{2}$, or $\#^{g} \mathbb{R} \mathrm{P}^{2}$, for some $g \geq 1$. The abelianizations of the fundamental groups of these surfaces are given by $\pi_{1}\left(S^{2}\right)^{a b} \cong 0$, $\pi_{1}\left(\#^{g} T^{2}\right)^{a b} \cong \mathbb{Z}^{2 g}$, and $\pi_{1}\left(\#^{g} \mathbb{R}^{2}\right)^{a b} \cong \mathbb{Z}^{g-1} \times \mathbb{Z} / 2 \mathbb{Z}$ (see Proposition 10.21 in Lee). The only finite cyclic groups appearing here are $\pi_{1}\left(S^{2}\right)^{a b}=0$ and $\pi_{1}\left(\mathbb{R} \mathrm{P}^{2}\right)^{a b}=\mathbb{Z} / 2 \mathbb{Z}$. Since $\pi_{1}\left(X_{n}\right) \cong \pi_{1}\left(X_{n}\right)^{a b} \cong$ $\mathbb{Z} / n \mathbb{Z}$ by (a), we can conclude that X_{n} is not a surface if $n \neq 1,2$. The space X_{1} is just the disk itself, which is not a surface since points on the boundary do not have euclidean neighborhoods (X_{1} is however a surface with boundary). The space X_{2} is obtained from the disk by identifying antipodal points on the boundary, so it is homeomorphic to $\mathbb{R P}^{2}$. In summary, X_{n} is a surface if and only if $n=2$.

