Exam: Brownian motion and stochastic differential equations (MT7043), 2023-02-20

Examiner:
Kristoffer Lindensjö
kristoffer.lindensjo@math.su.se.
Allowed aid: Calculator (provided by the department).
Return of exam: To be announced via the course webpage or the course forum.
The exam consists of five problems. Each problem gives a maximum of 10 points.

- The reasoning should be clear and concise.
- Answers should be motivated (unless otherwise stated).
- Any assumptions should be clearly stated and motivated.
- Start every problem on a new sheet of paper.
- Clearly number each sheet with problem number and sheet order.
- Write your code number (but no name) on each sheet.

Preliminary grading:
$\begin{array}{lllll}\text { A } & \text { B } & \text { C } & \text { D } & \text { E }\end{array}$
$\begin{array}{lllll}45 & 40 & 35 & 30 & 25\end{array}$
Good luck!

Problem 1

(A) State a general definition of a one-dimensional controlled SDE. Denote the controlled process by $\left(X_{t}\right)$ and consider Markov controls, i.e., controls of the type $u\left(t, X_{t}\right)$.
(B) Define a process $\left(X_{t}\right)$ according to $X_{t}=B_{t}^{4}$ (where $\left(B_{t}\right)$ is as usual a Brownian motion). Is this an Itô process? (Do not forget to give a clear motivation).
(5p)

Problem 2

Define a process $\left(M_{t}\right)$ according to

$$
M_{t}=B_{t}^{2}-f(t)
$$

where $f(t)$ is a deterministic function.
Is it possible to specify $f(t)$ so that $\left(M_{t}\right)$ is a martingale with $M_{0}=0$?
If the answer is yes then specify $f(t)$-regardless, do not forget give to a careful motivation for your answer.

Hint: Use the explicit form of $\mathbb{E}\left(B_{t}^{2}\right)$ to find a candidate for $f(t)$.

Problem 3

Does the process $\left(X_{t}\right)$ defined according to

$$
X_{t}=1+t+(1-t) \int_{0}^{t} \frac{1}{1-s} d B_{s}, \quad 0 \leq t<1
$$

solve the SDE

$$
\begin{equation*}
d X_{t}=\frac{2-X_{t}}{1-t} d t+d B_{t}, \quad 0 \leq t<1, \quad X_{0}=1 ? \tag{10p}
\end{equation*}
$$

Problem 4

Suppose $\left(X_{t}\right)$ solves a one-dimensional SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t} .
$$

Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$.
State the definition of the (infinitesimal) generator A of $\left(X_{t}\right)$-Hint: it is a limit as $t \searrow 0$.

Under a certain condition for $f(\cdot)$ it holds that

$$
A f(x)
$$

is equal to an expression based on $b(\cdot), \sigma(\cdot)$ and derivatives of $f(\cdot)$; state this expression and the condition for $f(\cdot)$.

Suppose f satisfies the condition and state the differential expression for $A f(x)$ in the following cases:
(i) $d X_{t}=b X_{t} d t+\sigma X_{t} d B_{t}$
(ii) $d X_{t}=b X_{t} d t+\sigma d B_{t}$.

Problem 5

State a general optimal stopping problem (based on a one-dimensional SDE) and formulate a corresponding verification theorem. Give a proof sketch for your verification theorem.

Hint: you may formulate the verification theorem considering only threshold solutions.

