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DEPT. OF MATHEMATICS EXAMINATION
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Exam in Statistical Deep Learning
21 Mar 2022, time 14:00-19:00

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: When writing the home exam, you may use any literature.
Electronic devices are NOT allowed

NOTE: The exam consists of 4 problems with 100 points in total. Logical ex-
planation and steps leading to the final solution must be clearly shown in order
to receive full marks.

NOTE: Your answers and explanations must be to the point, redundant wri-
ting irrelevant to the solution will result in point deduction.

Problem 1 (Feedforward neural networks, total 34p)
a) Suppose a feedforward neural network is used for classification ofN classes,

where the softmax output function is used together with the cross entropy
cost function. Show that the softmax function saturates only when the
classification is correct. (10p)

b) When using the softmax output function, the neural network outputs N
classification probabilities. We can however save some computational cost
by removing 1 output unit, making use of the fact that the probabilities
must sum to 1. How would you modify the output layer to achieve this?
(4p) Show that this modification preserves the saturation property in part
a. (4p)

c) Suppose that pmodel(y | x) = λ(x)eλ(x)y for λ(x) > 0. We want to train a
neural network λ̂(x; θ) to infer λ(x). What would be the form of the cost
function if we use the cross entropy loss? (4p) What would be a suitable
output function in this case? Motivate your answer. (4p)

d) Provide a choice of activation function, output function, loss function and
model that would make a deep feedforward neural network f(x; θ) equi-
valent to an ordinary least squares regression. (4p) Show that for these
design choices the network f(x; θ) is a linear function in the input x. (4p)

Problem 2 (Regularization, total 24p)
a) Consider modifying the cross entropy loss by introducing a prior p(θ) on

the parameters θ of the neural network, so that the cross entropy loss
is given by − log p(y|x; θ)p(θ), thereby maximizing a Bayesian posterior
distribution instead of the likelihood. Show that a Gaussian prior gives
rise to L2 regularization (4p) and a Laplace prior to L1 regularization.
(4p)
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b) Under what assumptions on the cost function J(θ) and under what con-
dition on the learning rate ε, number of epochs τ and norm penalty para-
meter α is early stopping equivalent to L2 regularization? (6p)

c) Let the number of hidden units be the same for a shallow (with only
one wide hidden layer) and deep (with many hidden layers) feedforward
neural network, give an example to demonstrate which of the two has more
parameters (weights and bias). (4p) Reason with the help of example that
the number of parameters of a feedforward network is NOT a good measure
of model complexity. (6p)

Problem 3 (Optimization and back propagation, total 26p)
a) In the Adam algorithm (Algorithm 8.7 in course book), the accumulated

1st and 2nd moments are normalized (ŝ← s/(1−ρt1) and r̂ ← r/(1−ρt2)).
Explain concisely what is the purpose of these normalizations. (8p)

b) Consider the recurrent neural network in the figure below where the ma-
trices W ,U and V are defined in Eq. 1, and gy(·) and gh(·) represent the
activation functions. Write down with CLEAR STEPS the back propaga-
tion through time derivative ∂Lt/∂V . (12p) From the expression, discuss
if the problems of vanishing/exploding gradient and learning long time
dependence exist for ∂Lt/∂V . (6p)

Outputs ŷt = gy(Wht + b)
Hidden units ht = gh(V xt + Uht−1 + b′)

Loss function L =
∑
t

Lt(ŷt)
(1)
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Problem 4 (Autoencoder and variational autoencoder (VAE),
total 16p)

a) Derive Eq. 11 in the 2018 paper “A practical tutorial on autoencoders for
nonlinear feature fusion” by Charte et al. (6p)

b) Consider the loss function of VAE (Eq. 23 in the 2021 paper “An intro-
duction to deep generative modeling” by Ruthotto et al.), Explain why
one cannot drop the prior term log pZ(z) that does not depend on the
parameters Ψ and θ explicitly. (4p)

c) There is one hyperparameter σ that needs to be fixed by us in the like-
lihood (or decoder) pθ(x|z) (see Eq. 3 of Ruthotto paper). What are the
problems if σ is too small or too big? (3p) Propose with reasoning how
this hyperparameter can be chosen. (3p)

Good Luck!
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