MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Jonas Bergström Lecturer: Tuomas Tajakka

Tentamensskrivning i Mathematics of Cryptography, 7,5 hp 14 March 2023 14.00-19.00

There are 2 pages and 8 problems with total score of 85 points. The score from the exam is added to the score from the homework assignments. Grades are then given by the following intervals:

A: 100-92 p B: 91-84 p C: 83-76p D: 75-68 p E: 67-60 p

Remember to justify your answers carefully. No calculators or computers may be used.

1. Define the following terms:

2.

a)	symmetric key cryptosystem	$2\mathrm{p}$
b)	chosen plaintext attack	$2\mathrm{p}$
c)	cryptographic hash function	$2\mathrm{p}$
d)	encoding scheme	$2\mathrm{p}$
e)	big- \mathcal{O} notation	$3\mathrm{p}$
a)	State Fermat's little theorem.	$2\mathrm{p}$
b)	Use Fermat's little theorem and the fast powering algorithm to find the multiplicative inverse of 5 in \mathbb{F}_{13} . Show all steps.	4 p

- c) In general, how many multiplications does the fast powering algorithm require? 4 p
- 3. a) What do we mean by the discrete logarithm problem in a finite group G? 2 p
 - b) Consider the following invertible matrices with coefficients in \mathbb{F}_7 :

$$g = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix}$$

Implement Shank's algorithm to solve the DLP $g^x = h$. You might find useful the identity

$$g^7 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

 $4\,\mathrm{p}$

 $4\,\mathrm{p}$

 $3\,\mathrm{p}$

c) What is the running time of Shank's algorithm for solving the DLP in \mathbb{F}_p^* ? Explain. 4 p

4. a) Describe the Pohlig-Hellman algorithm.

- b) Using a cryptosystem based on the DLP in \mathbb{F}_p^* , how should you choose the modulus p in order to shield against the Pohlig-Hellman algorithm? 2 p
- c) What is the running time of the Pohlig-Hellman algorithm together with the naive algorithm to solve a DLP in a group with N elements?

- 5. a) Describe the RSA public key cryptosystem and explain what role Euler's theorem plays in it.
 - b) Solve the congruence:

$$x^{27} \equiv 52 \mod 55$$

- c) Alice and Bob both create keys for the RSA cryptosystem. They both choose the modulus N = 8549, but Alice's encryption key is $e_A = 5$ while Bob's is $e_B = 4187$. Eve encrypts the message m = 44 using both keys and finds that the ciphertexts coincide. Using this information help Eve factor the modulus N. (*Hint:* $93^2 = 8649$.) $5\,\mathrm{p}$
- 6. a) Let N = 44377, $F(T) = T^2 N$, and $a = |\sqrt{N}| + 1 = 210$. Characterize which of the numbers

$$F(a), F(a+1), F(a+2), \dots, F(a+100)$$

are divisible by 5 and which are divisible by 11.

- b) Now set N = 3219577, $F(T) = T^2 N$, and $a = |\sqrt{N}| + 1 = 1794$. After computing F(a+i) for $i = 0, \ldots, 350$, we found the following 13-smooth numbers:
 - $(a+7)^2 N = 2^3 \cdot 3 \cdot 7 \cdot 11 \cdot 13$ $(a+19)^2 - N = 2^6 \cdot 3^4 \cdot 13$ $(a+59)^2 - N = 2^4 \cdot 3 \cdot 7^3 \cdot 13$ $(a+73)^2 - N = 2^7 \cdot 3^3 \cdot 7 \cdot 11$ $(a+227)^2 - N = 2^5 \cdot 3^3 \cdot 7 \cdot 11 \cdot 13$ $(a+343)^2 - N = 2^3 \cdot 3^7 \cdot 7 \cdot 11$

Find at least four perfect squares one can form out of these numbers.

- c) Write down all the checks for factors of N coming from the perfect squares you found in (b). You do not need to carry out the computations. $4\,\mathrm{p}$
- 7. a) Consider the elliptic curve $E: y^2 = x^3 + x + 1$ over \mathbb{F}_5 . Check that E indeed is an elliptic curve and that the points P = (2, 4) and Q = (3, 1) are on E, and calculate P + Q. $3\,\mathrm{p}$
 - b) An *inflection point* of an elliptic curve E is a point P where the tangent line meets E with multiplicity 3. What is the order of such at point P? Draw a picture. $3\,\mathrm{p}$
 - c) Let E be an elliptic curve over \mathbb{F}_{53} . Explain why the number of points on E is between 39 and 69.
 - d) Why is the fast powering algorithm particularly fast on an elliptic curve compared to an arbitrary group? 1 p
- 8. a) Describe the elliptic curve Diffie-Hellman key exchange. How should the public parameters be chosen? $4\,\mathrm{p}$
 - b) What is the main benefit of cryptosystems based on elliptic curves compared to those based on \mathbb{F}_n^* ?
 - c) Describe Lenstra's factorization algorithm. What kinds of numbers does it factor particularly efficiently? $5\,\mathrm{p}$

 $3\,\mathrm{p}$

 $4\,\mathrm{p}$

 $3\,\mathrm{p}$

 $4\,\mathrm{p}$

- $3\,\mathrm{p}$

 $3\,\mathrm{p}$