MATEMATISKA INSTITUTIONEN

 STOCKHOLMS UNIVERSITETAvd. Matematik
Examinator: Jonas Bergström
Lecturer: Tuomas Tajakka

Tentamensskrivning i
Mathematics of Cryptography, 7,5 hp
14 March 2023
14.00-19.00

There are 2 pages and 8 problems with total score of 85 points. The score from the exam is added to the score from the homework assignments. Grades are then given by the following intervals:
A: 100-92 p
B: 91-84 p
C: 83-76p
D: 75-68 p
E: $67-60$ p

Remember to justify your answers carefully. No calculators or computers may be used.

1. Define the following terms:
a) symmetric key cryptosystem 2 p
b) chosen plaintext attack 2 p
c) cryptographic hash function 2 p
d) encoding scheme 2 p
e) big- \mathcal{O} notation 3 p
2. a) State Fermat's little theorem. 2 p
b) Use Fermat's little theorem and the fast powering algorithm to find the multiplicative inverse of 5 in \mathbb{F}_{13}. Show all steps.
c) In general, how many multiplications does the fast powering algorithm require?
3. a) What do we mean by the discrete logarithm problem in a finite group G ?
b) Consider the following invertible matrices with coefficients in \mathbb{F}_{7} :

$$
g=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad h=\left(\begin{array}{ll}
1 & 0 \\
6 & 1
\end{array}\right) .
$$

Implement Shank's algorithm to solve the DLP $g^{x}=h$. You might find useful the identity

$$
g^{7}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

c) What is the running time of Shank's algorithm for solving the DLP in \mathbb{F}_{p}^{*} ? Explain. 4 p
4. a) Describe the Pohlig-Hellman algorithm. 4 p
b) Using a cryptosystem based on the DLP in \mathbb{F}_{p}^{*}, how should you choose the modulus p in order to shield against the Pohlig-Hellman algorithm?
c) What is the running time of the Pohlig-Hellman algorithm together with the naive algorithm to solve a DLP in a group with N elements?
5. a) Describe the RSA public key cryptosystem and explain what role Euler's theorem plays in it.
b) Solve the congruence:

$$
x^{27} \equiv 52 \quad \bmod 55
$$

c) Alice and Bob both create keys for the RSA cryptosystem. They both choose the modulus $N=8549$, but Alice's encryption key is $e_{A}=5$ while Bob's is $e_{B}=4187$. Eve encrypts the message $m=44$ using both keys and finds that the ciphertexts coincide. Using this information help Eve factor the modulus N. (Hint: $93^{2}=8649$.)
6. a) Let $N=44377, F(T)=T^{2}-N$, and $a=\lfloor\sqrt{N}\rfloor+1=210$. Characterize which of the numbers

$$
F(a), F(a+1), F(a+2), \ldots, F(a+100)
$$

are divisible by 5 and which are divisible by 11 .
b) Now set $N=3219577, F(T)=T^{2}-N$, and $a=\lfloor\sqrt{N}\rfloor+1=1794$. After computing $F(a+i)$ for $i=0, \ldots, 350$, we found the following 13 -smooth numbers:

$$
\begin{aligned}
(a+7)^{2}-N & =2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \\
(a+19)^{2}-N & =2^{6} \cdot 3^{4} \cdot 13 \\
(a+59)^{2}-N & =2^{4} \cdot 3 \cdot 7^{3} \cdot 13 \\
(a+73)^{2}-N & =2^{7} \cdot 3^{3} \cdot 7 \cdot 11 \\
(a+227)^{2}-N & =2^{5} \cdot 3^{3} \cdot 7 \cdot 11 \cdot 13 \\
(a+343)^{2}-N & =2^{3} \cdot 3^{7} \cdot 7 \cdot 11
\end{aligned}
$$

Find at least four perfect squares one can form out of these numbers.
c) Write down all the checks for factors of N coming from the perfect squares you found in (b). You do not need to carry out the computations.
7. a) Consider the elliptic curve $E: y^{2}=x^{3}+x+1$ over \mathbb{F}_{5}. Check that E indeed is an elliptic curve and that the points $P=(2,4)$ and $Q=(3,1)$ are on E, and calculate $P+Q$.
b) An inflection point of an elliptic curve E is a point P where the tangent line meets E with multiplicity 3 . What is the order of such at point P ? Draw a picture.
c) Let E be an elliptic curve over \mathbb{F}_{53}. Explain why the number of points on E is between 39 and 69 .
d) Why is the fast powering algorithm particularly fast on an elliptic curve compared to an arbitrary group?
8. a) Describe the elliptic curve Diffie-Hellman key exchange. How should the public parameters be chosen?
b) What is the main benefit of cryptosystems based on elliptic curves compared to those based on \mathbb{F}_{p}^{*} ?
) Describe Lenstra's factorization algorithm. What kinds of numbers does it factor particularly efficiently?

