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There are 2 pages and 8 problems with total score of 85 points. The score from the exam is added
to the score from the homework assignments. Grades are then given by the following intervals:

A: 100-92 p B: 91-84 p C: 83-76p D: 75-68 p E: 67-60 p

Remember to justify your answers carefully. No calculators or computers may be used.

1. Define the following terms:

a) symmetric key cryptosystem 2p

Solution: a symmetric key cryptosystem is a cryptosystem in which both parties know a secret
key k which is used for both encryption and decryption.

b) chosen plaintext attack 2 p

Solution: a chosen plaintext attack is an attack on a cryptosystem in which the adversary
chooses messages m1, . . . ,mn, obtains the encrypted messages e(m1), . . . , e(mn), and from this
tries to deduce a way to decrypt a general cyphertext.

c) cryptographic hash function 2 p

Solution: a cryptographic hash function is a function which sends a document to a binary string.
It is typically required to be fast to compute, hard to invert, and it should be hard to find two
documents with the same hash.

d) encoding scheme 2 p

Solution: an encoding scheme is a method of converting one sort of data into another sort of
data, e.g. converting text to numbers.

e) big-O notation 3 p

Solution: let f, g : R → R≥0 be functions. Then we say f = O(g) if there exist C,N ∈ R such
that f(x) ≤ Cg(x) for all x > N .

2. a) State Fermat’s little theorem. 2 p

Solution: Let p be a prime number and a ∈ N. Then

ap−1 ≡

{
1 (mod p) p ∤ a;
0 (mod p) p | a.

b) Use Fermat’s little theorem and the fast powering algorithm to find the multiplicative inverse
of 5 in F13. Show all steps. 4 p



Solution: We apply Fermat’s little theorem with a = 5 and p = 13 to see that 5−1 ≡ 5p−2 = 511

(mod 13).
Writing 11 = 20 + 21 + 23, we compute

52
0 ≡ 5 (mod 13);

52
1 ≡ 52 ≡ 25 ≡ −1 (mod 13);

52
2 ≡ (−1)2 ≡ 1 (mod 13);

52
3 ≡ 12 ≡ 1 (mod 13).

Hence we calculate

5−1 ≡ 52
0+21+23 ≡ 5 · (−1) · 1 ≡ −5 ≡ 8 (mod 13).

c) In general, how many multiplications does the fast powering algorithm require? 4 p

Solution: To compute an (mod p), the fast powering algorithm requires at most 2 log2(n) mul-

tiplications: by successively squaring, one can compute a2
⌊log2(n)⌋

in ⌊log2(n)⌋ multiplications.
To get an (mod p), one has to then multiply at most ⌈log2(n)⌉ of these values together, which
requires at most another ⌊log2(n)⌋ multiplications.

3. a) What do we mean by the discrete logarithm problem in a finite group G? 2 p

Solution: The discrete logarithm problem in a finite group G means the problem of finding
x ∈ Z satisfying gx = h for given g, h ∈ G.

b) Consider the following invertible matrices with coefficients in F7:

g =

(
1 0
1 1

)
, h =

(
1 0
6 1

)
.

Implement Shank’s algorithm to solve the DLP gx = h. You might find useful the identity

g7 =

(
1 0
0 1

)
.

4 p

Solution: Since g7 = id and 7 is a prime number, we find N := ord(g) = 7. Hence 2 <
√
N < 3,

so n = 1 + ⌊
√
N⌋ = 3. We now create two lists:

{e, g, g2, g3} and {h, hg−3, hg−6, hg−9}.

One computes

g2 =

(
1 0
2 1

)
g3 =

(
1 0
3 1

)
hg−6 = hg =

(
1 0
0 1

)
Without computing more, we find a match: hg−6 = e. Hence

h = g0 · g6 = g6,

so x = 6.



c) What is the running time of Shank’s algorithm for solving the DLP in F∗
p? Explain. 4 p

Solution: Shanks’ algorithm takes O(
√
N logN) steps, where N = ord(g). Set n = 1 + ⌊

√
N⌋.

The creation of the lists {e, g, . . . , gn} and {h, hg−n, . . . , hg−n2} takes approximately 2n steps,
since we can compute u := g−n one time and construct the second list as {h, hu, . . . , hun}.
Finding a match between the two lists of length n+1 takes O(n log n) steps, so this determines

the running time of the algorithm. Since n ≈
√
N , this comes down to a total running time of

O(
√
N logN).

4. a) Describe the Pohlig-Hellman algorithm. 4 p

Solution: The Pohlig-Hellman algorithm is a method to efficiently solve the discrete logarithm
problem gx = h in a group G when ord(g) = N is composite. It consists of two parts.

Part 1: Suppose N = pe, where p is a prime and e is a positive integer. We can solve gx = h as
follows:

1. We look for x in the form

x = x0 + x1p+ x2p
2 + . . .+ xe−1p

e−1,

where 0 ≤ xi < p for i = 0, . . . , e− 1. This is possible, since if a solution x exists, we can
assume that it satisfies 0 ≤ x ≤ N − 1.

2. Suppose we know x0, . . . , xi−1 for some i ≥ 0. We can solve xi from the equation

(gp
e−1

)xi =
(
h · g−x0−x1p−...−xi−1p

i−1
)pe−i−1

.

Part 2: For general N , write

N = q1 . . . qn

where the qi are pairwise coprime. Then we can solve gx = h as follows:

1. For each i, solve the discrete logarithm problem

(gN/qi)xi = hN/qi .

2. Use the Chinese remainder theorem to find x such that x ≡ xi (mod qi); this x solves the
original DLP.

b) Using a cryptosystem based on the DLP in F∗
p, how should you choose the modulus p in

order to shield against the Pohlig-Hellman algorithm? 2 p

Solution: One should choose p such that p− 1 can’t be factorised into powers of small primes.
Ideally, one should choose p such that 1

2(p− 1) is prime.

c) What is the running time of the Pohlig-Hellman algorithm together with the naive algorithm
to solve a DLP in a group with N elements? 3 p

Solution: The naive algorithm to solve a DLP gx = h in a group with N elements takes at most
N steps: we have ord(g) ≤ N , so we have to try at most N values of x to find a solution.
Now suppose N = pe11 . . . penn as before. Then Part 2 of the Pohlig-Hellman algorithm involves
solving n DLPs for elements of order peii for each i, and by Part 1, each of these amounts
to solving ei DLPs for elements of order pi. Thus, in total this takes O(

∑
i eipi) steps. The

Chinese remainder theorem has a running time of O(logN). Thus, the total running time is
O(

∑
eipi + logN).



5. a) Describe the RSA public key cryptosystem and explain what role Euler’s theorem plays in
it. 3 p

In the RSA public key cryptosystem, Alice picks two large primes p and q, and publishes the
modulus N := pq and a public key e satisfying gcd(e, (p − 1)(q − 1)) = 1. This allows her to
compute d := e−1 (mod (p− 1)(q − 1)).
When Bob wants to send Alice a messagem, he can send her the valueme (mod N), which Alice
can decrypt because (me)d ≡ m (mod N). This last statement follows from Euler’s theorem,
which says that if N = pq is a product of two primes, g := gcd(p− 1, q− 1), and gcd(a,N) = 1,

then a(p−1)(q−1)/g ≡ 1 (mod N). Indeed, since d = e−1 (mod (p− 1)(q − 1)), we can write

de = 1 + k
(p− 1)(q − 1)

g

for some k ∈ Z, and consequently

(me)d = mde = m1+k(p−1)(q−1)/g = m · (m(p−1)(q−1)/g)k ≡ m (mod (p− 1)(q − 1))

b) Solve the congruence:

x27 ≡ 52 mod 55

4 p

Solution 1: We use Euler’s theorem. Note that 55 = 5 · 11. We find that 27 is coprime to
(p− 1)(q − 1) = 4 · 10 = 40, so by Euler’s theorem, the unique solution is

x = 52d (mod 55), where d = 27−1 (mod 20),

since 20 = 4 · 10/ gcd(4, 10). By inspection, we notice that 3 · 27 ≡ 3 · 7 = 21 ≡ 1 (mod 20).
Thus,

x ≡ 523 ≡ (−3)3 = −27 ≡ 28 (mod 55).

Solution 2: Note that 55 = 5 · 11. By the Chinese remainder theorem, it is enough to solve the
congruences

x271 ≡ 2 (mod 5)

and

x272 ≡ 8 (mod 11)

and lift these to a solution modulo 55. Clearly x = 0 is not a solution to either equation, so
for p ∈ {5, 11} we may assume that xp−1 ≡ 1 (mod p) (by Fermat’s little theorem). Hence we
have to solve

x31 ≡ 2 (mod 5)

and

x72 ≡ 8 (mod 11).

Some trial and error gives x1 ≡ 3 (mod 5) and x2 ≡ 6 (mod 11). Finally, finding 0 ≤ x < 55
which reduces to x1 modulo 5 and to x2 modulo 11 is easy by checking which of the numbers
6 + 11n work for 0 ≤ n < 5. This gives the solution x = 28.

c) Alice and Bob both create keys for the RSA cryptosystem. They both choose the modulus
N = 8549, but Alice’s encryption key is eA = 5 while Bob’s is eB = 4187. Eve encrypts
the message m = 44 using both keys and finds that the ciphertexts coincide. Using this
information help Eve factor the modulus N . (Hint: 932 = 8649.) 5 p



Solution: We are given that 445 ≡ 444187 (mod 8549), so 444182 ≡ 1 (mod 8549). Hence also
442·4182 = 448364 ≡ 1 (mod 8549). It seems reasonable to believe that (p − 1)(q − 1) = 8364
given this information. This gives p+ q = pq − 8364 + 1 = 186. Then we have

(X − p)(X − q) = X2 − (p+ q)X + pq = X2 − 186X + 8549,

which we can solve with the quadratic formula. Noting that 186 = 2 · 93 and using the hint
932 = 8649, we obtain the solutions

186±
√
1862 − 4 · 8549

2
=

2 · 93± 2
√
932 − 8549

2
= 93±

√
100.

Thus N = 83 · 103.

6. a) Let N = 44377, F (T ) = T 2 − N , and a = ⌊
√
N⌋ + 1 = 210. Characterize which of the

numbers
F (a), F (a+ 1), F (a+ 2), . . . , F (a+ 100)

are divisible by 5 and which are divisible by 11. 3 p

Solution: Let’s start with the values modulo 5. We have N ≡ 2 (mod 5), so 5 divides F (T ) if
and only if T 2 ≡ 2 (mod 5). But the squares modulo 5 are 0, 1, 4, so we see that F (T ) is never
divisible by 5.

We do the same for the values modulo 11. Now N ≡ 3 (mod 11), so 11 divides F (T ) if and only
if T 2 ≡ 3 (mod 11). This equation has the two solutions T ≡ 5, 6 (mod 11). Since a = 210 ≡ 1
(mod 11), we see that F (a + x) is divisible by 11 if and only if x ≡ 4, 5 (mod 11). Thus, the
values divisible by 11 are

F (a+ 4), F (a+ 5), F (a+ 15), F (a+ 16), . . . , F (a+ 92), F (a+ 93).

b) Now set N = 3219577, F (T ) = T 2 − N , and a = ⌊
√
N⌋ + 1 = 1794. After computing

F (a+ i) for i = 0, . . . , 350, we found the following 13-smooth numbers:

(a+ 7)2 −N = 23 · 3 · 7 · 11 · 13
(a+ 19)2 −N = 26 · 34 · 13
(a+ 59)2 −N = 24 · 3 · 73 · 13
(a+ 73)2 −N = 27 · 33 · 7 · 11

(a+ 227)2 −N = 25 · 33 · 7 · 11 · 13
(a+ 343)2 −N = 23 · 37 · 7 · 11

Find at least four perfect squares one can form out of these numbers. 4 p

Solution: We have 6 primes ≤ 13, so we represent each of the found 13-smooth numbers by
vectors in F6

2 whose i-th entry is the parity of the power of the i-th prime in its factorisation.
Putting these into a matrix as column vectors, we obtain

1 0 0 1 1 1
1 0 1 1 1 1
0 0 0 0 0 0
1 0 1 1 1 1
1 0 0 1 1 1
1 1 1 0 1 0

 ,



which we reduce with Gaussian elimination to

1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

A general element in the kernel is (a, b, 0, c, a + b, b + c). Taking for example (a, b, c) ∈
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)} gives four perfect squares corresponding to the vectors

(1, 0, 0, 0, 1, 0) → (23 · 3 · 7 · 11 · 13) · (25 · 33 · 7 · 11 · 13);
(0, 1, 0, 0, 1, 1) → (26 · 34 · 13) · (25 · 33 · 7 · 11 · 13) · (23 · 37 · 7 · 11);
(0, 0, 0, 1, 0, 1) → (27 · 33 · 7 · 11) · (23 · 37 · 7 · 11);
(1, 1, 0, 0, 0, 1) → (23 · 3 · 7 · 11 · 13) · (26 · 34 · 13) · (23 · 37 · 7 · 11).

c) Write down all the checks for factors of N coming from the perfect squares you found in
(b). You do not need to carry out the computations. 4 p

Solution: Above, we have found four numbers which are 13-smooth and perfect squares; say
b21, . . . , b

2
4. We also know that these are the reductions of some a21, . . . , a

2
4 modulo N , and for

each i, we want to compute gcd(N, ai − bi) in order to hopefully factor N . So we need to check
the following quantities:

gcd(N, (a+ 7)(a+ 227)− 24 · 32 · 7 · 11 · 13);
gcd(N, (a+ 19)(a+ 227)(a+ 343)− 27 · 37 · 7 · 11 · 13);
gcd(N, (a+ 73)(a+ 343)− 25 · 35 · 7 · 11);
gcd(N, (a+ 7)(a+ 19)(a+ 343)− 26 · 36 · 7 · 11 · 13).

7. a) Consider the elliptic curve E : y2 = x3 + x + 1 over F5. Check that E indeed is an elliptic
curve and that the points P = (2, 4) and Q = (3, 1) are on E, and calculate P +Q. 3 p

Solution: To check that an equation y2 = x3 + ax+ b is an elliptic curve over Fp, we need that

∆ = 4a3 + 27b2 ̸≡ 0 (mod p).

In this case, ∆ = 4 + 27 ≡ 1 (mod 5), so E is an elliptic curve.

The point (2, 4) is on the curve iff 42 ≡ 23 + 2 + 1 ≡ 11 ≡ 1 (mod 5), which is true. Similarly,
(3, 1) is on the curve iff 13 ≡ 33 + 3 + 1 ≡ 31 ≡ 1 (mod 5), which is also true.

We calculate P +Q as follows. The line through P and Q is y = 2(x− 3) + 1. We obtain

y2 = x3 + x+ 1 = 4(x− 3)2 + 4(x− 3) + 1,

so x3 + x2 + x + 1 ≡ 0 (mod 5). Since P and Q are points of intersection, we can factor out
(x− 2)(x− 3), which makes the last factor (x− 4). Plugging in x = 4 in y = 2(x− 3) + 1 gives
y = 3. Finally, to obtain P +Q, we need to replace y by −y, which gives

P +Q = (4, 2).

b) An inflection point of an elliptic curve E is a point P where the tangent line meets E with
multiplicity 3. What is the order of such at point P? Draw a picture. 3 p



Solution: If the tangent line meets E with multiplicity 3 in a point P , it follows that the third
point of intersection of the tangent line at P with E is again P . By definition, this point is
−2P , so we have −2P = P and thus 3P = 0. Hence P has order 1 or order 3.
Your picture should contain a non-vertical tangent line to an elliptic curve which “crosses” the
curve, such that it will not intersect it in any other point. Example:

c) Let E be an elliptic curve over F53. Explain why the number of points on E is between 39
and 69. 3 p

Solution: By Hasse’s theorem, the number of points |E(Fp)| on an elliptic curve over Fp satisfy

|E(Fp)| = p+ 1− tp, where |tp| ≤ 2
√
p. In this case, 2

√
p = 2

√
53 < 2

√
64 = 16, so

39 = 54− 15 ≤ |E(F53)| ≤ 54 + 15 = 69.

d) Why is the fast powering algorithm particularly fast on an elliptic curve compared to an
arbitrary group? 1 p

Solution: Subtracting points on elliptic curves is equally time-efficient as adding points. There-
fore, when computing nP , one need not restrict themselves to expanding n as a binary number,
but can also allow for minus signs between powers of 2. This will lead to a more efficient fast
powering algorithm because the number of steps to compute nP may be reduced.

8. a) Describe the elliptic curve Diffie-Hellman key exchange. How should the public parameters
be chosen? 4 p

Solution: A trusted party publishes a prime number p, an elliptic curve E/Fp, and a point P
on E. If Alice and Bob want to perform a Diffie-Hellman key exchange, they should work as
follows:

• Alice picks an integer nA and sends Bob the point nAP .

• Bob picks an integer nB and sends Alice the point nBP .

• Alice computes nA(nBP ) and Bob computes nB(nAP ). This is their shared secret key.



For safety reasons, the public parameters should be chosen in such a way that the ECDLP has
no easy solutions. For instance, one should avoid points P such that ord(P ) is a product of
powers of small primes, as this would make the Pohlig-Hellman algorithm a feasible attack.
Similarly, one should avoid pairs (p,E) with |E(Fp)| = p+1 (i.e. supersingular elliptic curves),
since in this case the MOV algorithm yields a feasible attack.

b) What is the main benefit of cryptosystems based on elliptic curves compared to those based
on F∗

p? 3 p

Solution: The main benefit is that the DLP in F∗
p can be solved in subexponential time using

the index calculus (meaning O(pϵ) for every ϵ > 0), whereas the fastest known algorithm to
solve the ECDLP in E(Fp) takes O(

√
p) steps.

c) Describe Lenstra’s factorization algorithm. What kinds of numbers does it factor particu-
larly efficiently? 5 p

Solution: In Lenstra’s factorization algorithm, one starts with a number N = pq which one
wants to factorize. One then picks an elliptic curve E over Z/NZ and a point P on it. One
then calculates 2!P, 3!P, 4!P, . . .. At any step, it may be that the computation of n!P fails
because one needs to compute the inverse of a denominator, which does not exist in Z/NZ; it
follows that

gcd(denominator, N) > 1,

and the hope is that this gcd is a proper factor of N . If it is, we are done; if not, we try again
with a different elliptic curve and a different point.

Lenstra’s factorisation algorithm has a running time which only depends on the smallest prime
factor of N . Thus, it factors N particularly efficiently if it has a relatively small prime factor.


