
Solutions to the exam 230317, MM7027

1. (i) System (S1) is completely controllable, asymptotically stable and completely observable if

α 6= 2 and α 6= 1, since the characteristic polynomial of the matrix A1 =
(

0 1
−2 −3

)
is

s2 + 3s+ 2 has positive coefficients which implies that the eigenvalues have negative real part,

and the controllability matrix (b1, A1b1) =
(

1 0
0 −2

)
has rank 2 and the observability matrix(

c1
c1A1

)
=
(
α 1
−2 α− 3

)
which has rank 2 if and only if α 6= 2 and α 6= 1.

System (S2) is unstable since A2 = 1 > 0. It is completely controllable since b2 = 1 6= 0 which
means the controllability matrix has rank 1 and completely observable because c2 = 1 6= 0
implying the observability matrix has rank 1.

(ii) System (S3) is in the form(
ẋ1
ẋ2
ẋ3

)
=

(
0 1 0
−2 −3 0
α 1 1

)
︸ ︷︷ ︸

A3

(
x1
x2
x3

)
︸ ︷︷ ︸

x

+

(
1
0
0

)
︸︷︷ ︸
b3

u, , z = (0 0 1)︸ ︷︷ ︸
c3

x.

So the system is unstable since there is a positive real eigenvalue at 1. System (S3) is completely
controllable if α 6= 1/2 since the rank of the controllability matrix

(b3 A3b3 A2
3b3) =

(
1 0 −2
0 −2 6
0 α α− 2

)
is 3 if α 6= 1/2. It is completely observable if α 6= 1 and α 6= 2 since under this condition the
observability matrix (

c3
c3A3

c3A
2
3

)
=

(
0 0 1
α 1 1

α− 2 α− 2 1

)
has rank 3.

(iii) Note that the input fior (S1) is r − z = r − x3 and the input for (S2) is w = y = αx1 + x2 So
the feedback system S (S4) is governed by(

ẋ1
ẋ2
ẋ3

)
=

(
0 1 −1
−2 −3 0
α 1 1

)
︸ ︷︷ ︸

A4

(
x1
x2
x3

)
︸ ︷︷ ︸

x

+

(
1
0
0

)
︸︷︷ ︸
b4

r, , z = (0 0 1)︸ ︷︷ ︸
c4

x.

Now χA4(s) = s3 + 2s2 + (α− 1)s+ 3α− 4. It has all zeros with negative real part if and only
if α − 1 > 0, 3α − 4 > 0 and 2(α − 1) − (3α − 4) > 0, i.e. 4

3 < α < 2. That is the system is

asymptotically stable if 4
3 < α < 2. It is completely controllable if α 6= 1/2 since

(b4 A4b4 A2
4b4) =

(
1 0 −2− α
0 −2 6
0 α α− 2

)
has rank 3. It is completely observable if α 6= 1 and α 6= 2, since then(

c4
c4A4

c4A
2
4

)
=

(
0 0 1− α
α 1 1

α− 2 α− 2 −α+ 1

)
has rank 3.

2. Note that the equation is equivalent to P (A+ λI︸ ︷︷ ︸
Ã

) + (A+ λI)′P = −Q. Let µ be any eigenvalue of

Ã and v 6= 0 its associate eigenvector., i.e. Ãv = µv. Multilplying the above equation v∗ from left
and v from right yields 0 > −v∗Qv = (µ̄ + µ)v∗Pv which is µ̄ + µ) < 0 since P,Q are symmetric

positive definite. This means that the real part of µ < 0. Note that the eigenvalues of Ã are λ plus
the eigenvalues of A so the real part of eigenvalues of A must be less than −λ.
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3. By the Hautus Lemma, (λI −A,B) has full rank, n, for any λ ∈ C. Now

(λI − (A+BK), B) = (λI −A,B)
(
I 0
−K I

)
and

(
I 0
−K I

)
is non-singular. So the rank of (λI− (A+BK), B) is equal to the rank of λI−A,B)

which is n for any λ ∈ C, showing that (A+BK,B) is controllable by the Hautus Lemma again.

4. By the boundary conditions for x we see that b 6= 0. So the reachability grammian
∫ 1

0
b(t)2dt 6= 0.

So the system can be driven by the choice of u to the state x(1) = 0 from x(0) = 1. So we have the
Hamiltonian

H(p, x, u) = u2 + pbu.

where p 6= 0 by the Pontragin Minimum Principle. Clearly

u∗(t) = arg min
u
H(p, x, u) = arg min

u

(
u+

pb

2

)2

− p2b2

4
= −pb

2
.

Hence H(p, x, u∗) = − b2p2

4 . The function p satisfies ṗ = 0 without boundary conditions. p(t) = C,

a constant. Now we solve x from ẋ∗ = b(t)u∗(t) = −b2(t)C
2 . Integrating this equation we get

x∗(t) = 1 − C
2

∫ t

0
b2(s)ds. Using x∗(1) = 0 yields C = 2/

∫ 1

0
b2(t)dt. To summarize, the optimal

control u∗(t) = b(t)/
∫ 1

0
b2(s)ds which transfers ẋ = bu from x(0) = 1 to x(1) = 1.

5. (i) The realization under the given condition is three dimension. Since s+ 1 is a common factor of

the given polynomials c(sI−A)−1b = s2+3s+2
s3+3s2−s−3 = s+2

s2+2s−3 . So we have a realization of dimension
2, proving that the realization is not minimal.

(ii) Consider the minimal realization in controller form

A[ =

 0 1 0 · · · 0
· · · · · · ·
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 , b[ =

0
...
1

 , c[ = (c1, ..., cn)

A straightforward computation show that A[(b[c[) 6= (b[c[)A[. For any given minimal realization
(A, b, c) of dimension n it is similar to (A[, b[c[), i.e. there is a nonsingular matrix P such that

A[ = P−1AP, b[ = P−1b, c[ = cP.

ClearlyA(bc) = (PA[P−1)((Pb[)(c[P−1)) = P (A[(b[c[))P−1 and (bc)A = ((Pb[)(c[P−1))(PA[P−1) =
P (b[c[)A[P−1 are not equal. Hence if (A, b, c) is minimal realization then A and bc do not commute.

6. See lecture notes https://kurser.math.su.se/pluginfile.php/161815/mod_resource/content/
0/Day8_Dynamic_feedback.pdf

7. see lecture notes https://kurser.math.su.se/pluginfile.php/161350/mod_resource/content/
0/Day5_controllabilty_tests_pole-shifting.pdf

8. Let λ1, ..., λn, counted with multiplicity, be eigenvalues of A. Since ẋ = Ax is asymptotically stable,
λi ∈ C−. Note also that the stepsize ∆ > 0.

(i) The iteration is x(k + 1) = (I − ∆A)−1x(k). It converges if and only if all the eigenvalues of
I −∆A, 1−∆λi, i = 1, ..., n lie outside of the unite circle, or equivalently, ∆λi lies outside of the
circle {z : |z − 1| = 1} which covers C− for all ∆ > 0. So it converges to the solution of ẋ = Ax
which is assumed to be asymptotically stable.

(ii) In this case x(k + 1) = (I + ∆A)x(k). It converges if and only if the eigenvalues of I + ∆A lies
inside the unit circle of ∆λi lies in open the disk {z : |z + 1| < 1} ⊂ C−. In order to have x(k)
converge to the solution of ẋ = Ax, we have to impose the condition on the stepsize ∆: |1+∆λi| < 1,
for alla i = 1, ..., n, which holds true if ∆ < 2/maxi |λi|.

2



9. (i) See https://kurser.math.su.se/pluginfile.php/162600/mod_resource/content/3/final_
review.pdf on page 4.

(ii) See https://kurser.math.su.se/pluginfile.php/162600/mod_resource/content/3/final_
review.pdf on page 6.

(iii) Assume the controllability subspace has dimension r < n. By the Kalman decomposition there
is a nonsingular matrix P such that

Ã = P−1AP =
(
A1 A2
0 A3

)
, B̃ = P−1B =

(
B1
0

)
, C̃ = CP = (C1, C2),

where (A1, B1) is controllable. Using these relation and multiply the ARE P−1 from left and P
from right yield

K11A1 +A′1K11 −K11B1B
′
1 + C ′1C1 = 0,

which is an ARE of r × r matrix equation, where K̃ = P−1KP =
(
K11 K12
K12 K22

)
, and

K12A1 +A′2K11 +A′3K
′
12 +K12B1B

′
1K11 + C ′2C1 = 0,

which is Lyapunov equations for K12 if the r-dimensional ARE is solved for K11, and finally

K12A2 +K22A3 +A′2K12 +A′3K22 +K12B1B
′
1K12 + C ′2C2 = 0

another Lyapunov equation but for K22.
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