Solutions to the exam 230317, MM7027

1. (i) System $\left(S_{1}\right)$ is completely controllable, asymptotically stable and completely observable if $\alpha \neq 2$ and $\alpha \neq 1$, since the characteristic polynomial of the matrix $A_{1}=\left(\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right)$ is $s^{2}+3 s+2$ has positive coefficients which implies that the eigenvalues have negative real part, and the controllability matrix $\left(b_{1}, A_{1} b_{1}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right)$ has rank 2 and the observability matrix $\binom{c_{1}}{c_{1} A_{1}}=\left(\begin{array}{cc}\alpha & 1 \\ -2 & \alpha-3\end{array}\right)$ which has rank 2 if and only if $\alpha \neq 2$ and $\alpha \neq 1$.
System $\left(S_{2}\right)$ is unstable since $A_{2}=1>0$. It is completely controllable since $b_{2}=1 \neq 0$ which means the controllability matrix has rank 1 and completely observable because $c_{2}=1 \neq 0$ implying the observability matrix has rank 1.
(ii) System $\left(S_{3}\right)$ is in the form

$$
\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
0 & 1 & 0 \\
-2 & -3 & 0 \\
\alpha & 1 & 1
\end{array}\right)}_{A_{3}} \underbrace{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)}_{x}+\underbrace{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}_{b_{3}} u, \quad z=\underbrace{\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)}_{c_{3}} x
$$

So the system is unstable since there is a positive real eigenvalue at 1. System $\left(S_{3}\right)$ is completely controllable if $\alpha \neq 1 / 2$ since the rank of the controllability matrix

$$
\left(\begin{array}{lll}
b_{3} & A_{3} b_{3} & A_{3}^{2} b_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & -2 & 6 \\
0 & \alpha & \alpha-2
\end{array}\right)
$$

is 3 if $\alpha \neq 1 / 2$. It is completely observable if $\alpha \neq 1$ and $\alpha \neq 2$ since under this condition the observability matrix

$$
\left(\begin{array}{c}
c_{3} \\
c_{3} A_{3} \\
c_{3} A_{3}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\alpha & 1 & 1 \\
\alpha-2 & \alpha-2 & 1
\end{array}\right)
$$

has rank 3.
(iii) Note that the input fior $\left(S_{1}\right)$ is $r-z=r-x_{3}$ and the input for $\left(S_{2}\right)$ is $w=y=\alpha x_{1}+x_{2}$ So the feedback system $\mathrm{S}\left(S_{4}\right)$ is governed by

$$
\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
0 & 1 & -1 \\
-2 & -3 & 0 \\
\alpha & 1 & 1
\end{array}\right)}_{A_{4}} \underbrace{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)}_{x}+\underbrace{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}_{b_{4}} r,, \quad z=\underbrace{\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)}_{c_{4}} x
$$

Now $\chi_{A_{4}}(s)=s^{3}+2 s^{2}+(\alpha-1) s+3 \alpha-4$. It has all zeros with negative real part if and only if $\alpha-1>0,3 \alpha-4>0$ and $2(\alpha-1)-(3 \alpha-4)>0$, i.e. $\frac{4}{3}<\alpha<2$. That is the system is asymptotically stable if $\frac{4}{3}<\alpha<2$. It is completely controllable if $\alpha \neq 1 / 2$ since

$$
\left(\begin{array}{lll}
b_{4} & A_{4} b_{4} & A_{4}^{2} b_{4}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -2-\alpha \\
0 & -2 & 6 \\
0 & \alpha & \alpha-2
\end{array}\right)
$$

has rank 3 . It is completely observable if $\alpha \neq 1$ and $\alpha \neq 2$, since then

$$
\left(\begin{array}{c}
c_{4} \\
c_{4} A_{4} \\
c_{4} A_{4}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1-\alpha \\
\alpha & 1 & 1 \\
\alpha-2 & \alpha-2 & -\alpha+1
\end{array}\right)
$$

has rank 3 .
2. Note that the equation is equivalent to $P(\underbrace{A+\lambda I}_{\tilde{A}})+(A+\lambda I)^{\prime} P=-Q$. Let μ be any eigenvalue of \tilde{A} and $v \neq 0$ its associate eigenvector., i.e. $\tilde{A} v=\mu v$. Multilplying the above equation v^{*} from left and v from right yields $0>-v^{*} Q v=(\bar{\mu}+\mu) v^{*} P v$ which is $\left.\bar{\mu}+\mu\right)<0$ since P, Q are symmetric positive definite. This means that the real part of $\mu<0$. Note that the eigenvalues of \tilde{A} are λ plus the eigenvalues of A so the real part of eigenvalues of A must be less than $-\lambda$.
3. By the Hautus Lemma, $(\lambda I-A, B)$ has full rank, n, for any $\lambda \in \mathbb{C}$. Now

$$
(\lambda I-(A+B K), B)=(\lambda I-A, B)\left(\begin{array}{cc}
I & 0 \\
-K & I
\end{array}\right)
$$

and $\left(\begin{array}{cc}I & 0 \\ -K & I\end{array}\right)$ is non-singular. So the rank of $(\lambda I-(A+B K), B)$ is equal to the rank of $\left.\lambda I-A, B\right)$ which is n for any $\lambda \in \mathbb{C}$, showing that $(A+B K, B)$ is controllable by the Hautus Lemma again.
4. By the boundary conditions for x we see that $b \neq 0$. So the reachability grammian $\int_{0}^{1} b(t)^{2} d t \neq 0$. So the system can be driven by the choice of u to the state $x(1)=0$ from $x(0)=1$. So we have the Hamiltonian

$$
H(p, x, u)=u^{2}+p b u
$$

where $p \neq 0$ by the Pontragin Minimum Principle. Clearly

$$
u^{*}(t)=\arg \min _{u} H(p, x, u)=\arg \min _{u}\left(u+\frac{p b}{2}\right)^{2}-\frac{p^{2} b^{2}}{4}=-\frac{p b}{2}
$$

Hence $H\left(p, x, u^{*}\right)=-\frac{b^{2} p^{2}}{4}$. The function p satisfies $\dot{p}=0$ without boundary conditions. $p(t)=C$, a constant. Now we solve x from $\dot{x}^{*}=b(t) u^{*}(t)=-b^{2}(t) \frac{C}{2}$. Integrating this equation we get $x^{*}(t)=1-\frac{C}{2} \int_{0}^{t} b^{2}(s) d s$. Using $x^{*}(1)=0$ yields $C=2 / \int_{0}^{1} b^{2}(t) d t$. To summarize, the optimal control $u^{*}(t)=b(t) / \int_{0}^{1} b^{2}(s) d s$ which transfers $\dot{x}=b u$ from $x(0)=1$ to $x(1)=1$.
5. (i) The realization under the given condition is three dimension. Since $s+1$ is a common factor of the given polynomials $c(s I-A)^{-1} b=\frac{s^{2}+3 s+2}{s^{3}+3 s^{2}-s-3}=\frac{s+2}{s^{2}+2 s-3}$. So we have a realization of dimension 2 , proving that the realization is not minimal.
(ii) Consider the minimal realization in controller form

$$
A^{b}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
. & . & . & \cdots & \dot{.} \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right), b^{b}=\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right), c^{b}=\left(c_{1}, \ldots, c_{n}\right)
$$

A straightforward computation show that $A^{b}\left(b^{b} c^{b}\right) \neq\left(b^{b} c^{b}\right) A^{b}$. For any given minimal realization (A, b, c) of dimension n it is similar to $\left(A^{b}, b^{b} c^{b}\right)$, i.e. there is a nonsingular matrix P such that

$$
A^{b}=P^{-1} A P, b^{b}=P^{-1} b, c^{b}=c P
$$

Clearly $A(b c)=\left(P A^{b} P^{-1}\right)\left(\left(P b^{b}\right)\left(c^{b} P^{-1}\right)\right)=P\left(A^{b}\left(b^{b} c^{b}\right)\right) P^{-1}$ and $(b c) A=\left(\left(P b^{b}\right)\left(c^{b} P^{-1}\right)\right)\left(P A^{b} P^{-1}\right)=$ $P\left(b^{b} c^{b}\right) A^{b} P^{-1}$ are not equal. Hence if (A, b, c) is minimal realization then A and $b c$ do not commute.
6. See lecture notes https://kurser.math.su.se/pluginfile.php/161815/mod_resource/content/ 0/Day8_Dynamic_feedback.pdf
7. see lecture notes https://kurser.math.su.se/pluginfile.php/161350/mod_resource/content/ 0/Day5_controllabilty_tests_pole-shifting.pdf
8. Let $\lambda_{1}, \ldots, \lambda_{n}$, counted with multiplicity, be eigenvalues of A. Since $\dot{x}=A x$ is asymptotically stable, $\lambda_{i} \in \mathbb{C}^{-}$. Note also that the stepsize $\Delta>0$.
(i) The iteration is $x(k+1)=(I-\Delta A)^{-1} x(k)$. It converges if and only if all the eigenvalues of $I-\Delta A, 1-\Delta \lambda_{i}, i=1, \ldots, n$ lie outside of the unite circle, or equivalently, $\Delta \lambda_{i}$ lies outside of the circle $\{z:|z-1|=1\}$ which covers \mathbb{C}^{-}for all $\Delta>0$. So it converges to the solution of $\dot{x}=A x$ which is assumed to be asymptotically stable.
(ii) In this case $x(k+1)=(I+\Delta A) x(k)$. It converges if and only if the eigenvalues of $I+\Delta A$ lies inside the unit circle of $\Delta \lambda_{i}$ lies in open the disk $\{z:|z+1|<1\} \subset \mathbb{C}^{-}$. In order to have $x(k)$ converge to the solution of $\dot{x}=A x$, we have to impose the condition on the stepsize $\Delta:\left|1+\Delta \lambda_{i}\right|<1$, for alla $i=1, \ldots, n$, which holds true if $\Delta<2 / \max _{i}\left|\lambda_{i}\right|$.
9. (i) See https://kurser.math.su.se/pluginfile.php/162600/mod_resource/content/3/final_ review.pdf on page 4.
(ii) See https://kurser.math.su.se/pluginfile.php/162600/mod_resource/content/3/final_ review.pdf on page 6 .
(iii) Assume the controllability subspace has dimension $r<n$. By the Kalman decomposition there is a nonsingular matrix P such that

$$
\tilde{A}=P^{-1} A P=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right), \tilde{B}=P^{-1} B=\binom{B_{1}}{0}, \tilde{C}=C P=\left(C_{1}, C_{2}\right)
$$

where $\left(A_{1}, B_{1}\right)$ is controllable. Using these relation and multiply the ARE P^{-1} from left and P from right yield

$$
K_{11} A_{1}+A_{1}^{\prime} K_{11}-K_{11} B_{1} B_{1}^{\prime}+C_{1}^{\prime} C_{1}=0
$$

which is an ARE of $r \times r$ matrix equation, where $\tilde{K}=P^{-1} K P=\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{12} & K_{22}\end{array}\right)$, and

$$
K_{12} A_{1}+A_{2}^{\prime} K_{11}+A_{3}^{\prime} K_{12}^{\prime}+K_{12} B_{1} B_{1}^{\prime} K_{11}+C_{2}^{\prime} C_{1}=0
$$

which is Lyapunov equations for K_{12} if the r-dimensional ARE is solved for K_{11}, and finally

$$
K_{12} A_{2}+K_{22} A_{3}+A_{2}^{\prime} K_{12}+A_{3}^{\prime} K_{22}+K_{12} B_{1} B_{1}^{\prime} K_{12}+C_{2}^{\prime} C_{2}=0
$$

another Lyapunov equation but for K_{22}.

