- No use of textbook, notes, or calculators is allowed.
- Unless told otherwise, you may quote results that were proved in class. When you do, state precisely the result that you are using.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

1. Let G be a group, and $N \triangleleft G$ a normal subgroup. For each of the following statements, determine if it is true or false. Give a brief justification or a counterexample.
(a) (2 points) If N and G / N are both abelian, then G is abelian.
(b) (2 points) If G is abelian then N and G / N are both abelian.
2. Let G be a group and $H_{1}, H_{2} \subset G$ two subgroups. Recall that $H_{1} H_{2}$ is the set of all products $\left\{h_{1} h_{2} \in G \mid h_{1} \in H_{1}, h_{2} \in H_{2}\right\}$.
(a) (3 points) Show an example where $H_{1} H_{2}$ is not a subgroup of G.
(b) (3 points) Prove that if $H_{1} H_{2} \subseteq H_{2} H_{1}$ then in fact $H_{1} H_{2}=H_{2} H_{1}$.
3. Suppose G is a group that acts transitively on the left on a set X. Recall that "transitively" means that for every two elements $x_{1}, x_{2} \in X$ there exists a $g \in G$ such that $g x_{1}=x_{2}$.
(a) (3 points) Let $x_{1}, x_{2} \in X$. Prove that the stabilizers of x_{1} and x_{2} are conjugate subgroups of G.
(b) (2 points) Suppose in addition that G is finite. Prove that there exists an element $g \in G$ that satisfies $g x \neq x$ for all $x \in X$ (in other words, prove that there exists an element of G that does not fix any element of X).
4. (a) (2 points) Prove that a group of order 56 can not be simple.
(b) (3 points) Prove that a group of order 72 can not be simple.
5. (a) (2 points) Let R be a ring, and I, J ideals of R. Suppose that $I \cap J$ is a prime ideal of R. Prove that either $I \subseteq J$ or $J \subseteq I$.
(b) (3 points) Let R be a ring that satisfies $x^{2}=x$ for all $x \in R$. Prove that R is commutative.
6. Let \mathbb{F} be a field, and $\mathbb{F}[x]$ the ring of polynomials over \mathbb{F}. In this question you will consider the ideals $\left(x^{2}+1\right)$ and $\left(x^{2}-1\right)$ in $\mathbb{F}[x]$, and the quotient rings $\mathbb{F}[x] /\left(x^{2}+1\right)$ and $\mathbb{F}[x]\left(x^{2}-1\right)$. Be sure to justify your answers.
(a) (2 points) Suppose $\mathbb{F}=\mathbb{C}$ is the field of complex numbers. Are the rings $\mathbb{C}[x] /\left(x^{2}+1\right)$ and $\mathbb{C}[x] /\left(x^{2}-1\right)$ isomorphic?
(b) (3 points) Suppose $\mathbb{F}=\mathbb{F}_{3}$ is the field with three elements. Are the rings $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ and $\mathbb{F}_{3} /\left(x^{2}-1\right)$ isomorphic?
