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• No use of textbook, notes, or calculators is allowed.

• Unless told otherwise, you may quote results that were proved in class. When you do, state
precisely the result that you are using.

• Be sure to justify your answers, and show clearly all steps of your solutions.

• In problems with multiple parts, results of earlier parts can be used in the solution of later
parts, even if you do not solve the earlier parts

1. Let G be a group, and N ◁ G a normal subgroup. For each of the following statements,
determine if it is true or false. Give a brief justification or a counterexample.

(a) (2 points) If N and G/N are both abelian, then G is abelian.

Solution: False. For example, the symmetric groups S3 has a normal subgroup isomorphic
to the cyclic group Z/3 with quotient group Z/2. Both the subgroup and the quotient are
abelian, but S3 is not abelian.

(b) (2 points) If G is abelian then N and G/N are both abelian.

Solution: True. (I leave the justification as an exercise).

2. Let G be a group and H1, H2 ⊂ G two subgroups. Recall that H1H2 is the set of all products
{h1h2 ∈ G | h1 ∈ H1, h2 ∈ H2}.
(a) (3 points) Show an example where H1H2 is not a subgroup of G.

Solution: Take the symmetric group S3. Let H1 = {e, (1, 2)} and H2 = {e, (23)}. Then

H1H2 = {e, (12), (23), (1, 2, 3)}.

This is not a subgroup of S3. For example,

(2, 3)(1, 2, 3) = (1, 3) /∈ H1H2.

(b) (3 points) Prove that if H1H2 ⊆ H2H1 then in fact H1H2 = H2H1.

Solution: Let h1 ∈ H1, h2 ∈ H2. We need to prove that h2h1 ∈ H1H2. We know that

(h2h1)
−1 = h−1

1 h−1
2 ∈ H1H2 ⊆ H2H1.

It follows that there exist g1 ∈ H1, g2 ∈ H2 such that h−1
1 h−1

2 = g2g1. But then h2h1 =
g−1
1 g−1

2 ∈ H1H2.

3. Suppose G is a group that acts transitively on the left on a set X. Recall that “transitively”
means that for every two elements x1, x2 ∈ X there exists a g ∈ G such that gx1 = x2.

(a) (3 points) Let x1, x2 ∈ X. Prove that the stabilizers of x1 and x2 are conjugate subgroups
of G.

Solution: Choose an element g0 ∈ G such that g0x1 = x2. Let Gx denote the stabilizer
of x. I claim that Gx1 = g−1

0 Gx2g0. To see this, suppose first that g ∈ Gx2 . Then
gx2 = x2 and g−1

0 gg0x1 = g−1
0 gx2 = g−1

0 x2 = x1. We have proved that g−1
0 Gx2g0 ⊆ Gx1 .

Interchanging the roles of x1 and x2 one can prove in the same way that g0Gx1g
−1
0 ⊆ Gx2 ,

which means that Gx1 ⊆ g−1
0 Gx2g0. Thus Gx1 = g−1

0 Gx2g0.
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(b) (2 points) Suppose in addition that G is finite. Prove that there exists an element g ∈ G
that satisfies gx ̸= x for all x ∈ X (in other words, prove that there exists an element of
G that does not fix any element of X).

Solution: The statement is equivalent to proving that⋃
x∈X

Gx ⊊ G.

Let |S| denote the number of elements in a set S. Since G is finite, it is enough to prove
that ∣∣∣∣∣ ⋃

x∈X
Gx

∣∣∣∣∣ < |G|.

We know that the groups Gx are not pairwise disjoint, because they have at least the
identity element in common. It follows that∣∣∣∣∣ ⋃

x∈X
Gx

∣∣∣∣∣ < ∑
x∈X

|Gx|.

Therefore it is enough to prove that ∑
x∈X

|Gx| ≤ |G|.

By part (a) the stabilizer groups Gx are conjugate to each other. By the orbit-stabilizer
theorem for any choice of x0 ∈ X, |X| = [G : Gx0 ]. It follows that∑

x∈X
|Gx| = |X| · |Gx0 | = [G : Gx0 ]|Gx0 | = |G|.

4. (a) (2 points) Prove that a group of order 56 can not be simple.

Solution: 56 = 8 · 7. By Sylow theorem n7 is either 1 or 8. If n7 = 1 then the group
has a normal 7-Sylow subgroup, and is not simple. Suppose n7 = 8. Then the group has
6 · 8 = 48 elements of order 7, and exactly 8 elements of order different from 7. It follows
that there are enough elements for exactly one 2-Sylow subgroup of order 8. So in this
case the group has a normal 2-Sylow subgroup. In any case, a group with 56 elements can
not be simple.

(b) (3 points) Prove that a group of order 72 can not be simple.

Solution: Suppose G is a group with 72 elements. 72 = 8 · 9. By Sylow theorem, n3 = 1
or 4. If n3 = 1 then G is not simple and we are done. Suppose n3 = 4. Then G has four 3-
Sylow subgroups. The action of G on the set of 3-Sylow subgroups by conjugation induces
a non-trivial homomorphism G → S4. Since S4 has 24 elements, this homomorphism can
not be injective. Thus the kernel of this homomorphism is a proper, non-trivial subgroup
of G, and G is not simple.

5. (a) (2 points) Let R be a ring, and I, J ideals of R. Suppose that I ∩ J is a prime ideal of R.
Prove that either I ⊆ J or J ⊆ I.

Solution: Suppose, by contradiction, that neither of the ideals I and J contains the other.
We will prove that in this case I ∩ J is not a prime ideal.



Math 307 Suggested Exam 1 - Page 3 of 3 Due: 3/3/16

There exist elements x ∈ I \ J and y ∈ J \ I. Then xy ∈ I because x ∈ I and xy ∈ J
because y ∈ J . Thus xy ∈ I ∩ J . But x /∈ I ∩ J and y /∈ I ∩ J , so I ∩ J is not a prime
ideal.

(b) (3 points) Let R be a ring that satisfies x2 = x for all x ∈ R. Prove that R is commutative.

Solution: First, we prove that for every x ∈ R, x + x = 0. Indeed, by assumption
(x+ x)2 = x+ x. Multiplying out and using the distributivity law we find that

x2 + x2 + x2 + x2 = x+ x.

By assumption x2 = x, so x + x + x + x = x + x, and therefore x + x = 0. This means
that x = −x for all x ∈ R.

Next, let us use that for any x, y ∈ R, (x+ y)(x+ y) = x+ y. Multiplying out once again
we find that

x2 + xy + yx+ y2 = x+ y.

Since x2 = x and y2 = y, this equality simplifies to xy + yx = 0. But yx = −yx, so
xy = yx, for all x, y ∈ R.

6. Let F be a field, and F[x] the ring of polynomials over F. In this question you will consider the
ideals (x2 + 1) and (x2 − 1) in F[x], and the quotient rings F[x]/(x2 + 1) and F[x](x2 − 1). Be
sure to justify your answers.

(a) (2 points) Suppose F = C is the field of complex numbers. Are the rings C[x]/(x2 + 1)
and C[x]/(x2 − 1) isomorphic?

Solution: Yes, because over C we have x2−1 = (x−1)(x+1) and x2+1 = (x− i)(x+ i).

Recall that for any constant a, there is an isomorphism of rings C[x]/(x− a)
∼=−→ C. Using

the Chinese Remainder Theorem, we obtain isomorphisms of rings

C[x]/(x2 − 1) ∼= C[x]/(x− 1)× C[x]/(x+ 1) ∼= C× C,

C[x]/(x2 + 1) ∼= C[x]/(x− i)× C[x]/(x+ i) ∼= C× C.

The right hand sides are the same, so the left hand sides are isomorphic.

(b) (3 points) Suppose F = F3 is the field with three elements. Are the rings F3[x]/(x
2 + 1)

and F3/(x
2 − 1) isomorphic?

Solution: No. The polynomial x2+1 does not have a root over F3. Since it is a quadratic
polynomial, it follows that it is irreducible over F3. It follows that F3[x]/(x

2 + 1) is an
integral domain (a field even). On the other hand the polynomial x2 − 1 = (x− 1)(x+ 1)
is reducible, and thus F3/(x

2 − 1) is not an integral domain. It follows that the two rings
are not isomorphic.


