- No use of textbook, notes, or calculators is allowed.
- Unless told otherwise, you may quote results that were proved in class. When you do, state precisely the result that you are using.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

1. Let G be a group, and $N \triangleleft G$ a normal subgroup. For each of the following statements, determine if it is true or false. Give a brief justification or a counterexample.
(a) (2 points) If N and G / N are both abelian, then G is abelian.

Solution: False. For example, the symmetric groups S_{3} has a normal subgroup isomorphic to the cyclic group $\mathbb{Z} / 3$ with quotient group $\mathbb{Z} / 2$. Both the subgroup and the quotient are abelian, but S_{3} is not abelian.
(b) (2 points) If G is abelian then N and G / N are both abelian.

Solution: True. (I leave the justification as an exercise).
2. Let G be a group and $H_{1}, H_{2} \subset G$ two subgroups. Recall that $H_{1} H_{2}$ is the set of all products $\left\{h_{1} h_{2} \in G \mid h_{1} \in H_{1}, h_{2} \in H_{2}\right\}$.
(a) (3 points) Show an example where $H_{1} H_{2}$ is not a subgroup of G.

Solution: Take the symmetric group S_{3}. Let $H_{1}=\{e,(1,2)\}$ and $H_{2}=\{e,(23)\}$. Then

$$
H_{1} H_{2}=\{e,(12),(23),(1,2,3)\}
$$

This is not a subgroup of S_{3}. For example,

$$
(2,3)(1,2,3)=(1,3) \notin H_{1} H_{2}
$$

(b) (3 points) Prove that if $H_{1} H_{2} \subseteq H_{2} H_{1}$ then in fact $H_{1} H_{2}=H_{2} H_{1}$.

Solution: Let $h_{1} \in H_{1}, h_{2} \in H_{2}$. We need to prove that $h_{2} h_{1} \in H_{1} H_{2}$. We know that

$$
\left(h_{2} h_{1}\right)^{-1}=h_{1}^{-1} h_{2}^{-1} \in H_{1} H_{2} \subseteq H_{2} H_{1}
$$

It follows that there exist $g_{1} \in H_{1}, g_{2} \in H_{2}$ such that $h_{1}^{-1} h_{2}^{-1}=g_{2} g_{1}$. But then $h_{2} h_{1}=$ $g_{1}^{-1} g_{2}^{-1} \in H_{1} H_{2}$.
3. Suppose G is a group that acts transitively on the left on a set X. Recall that "transitively" means that for every two elements $x_{1}, x_{2} \in X$ there exists a $g \in G$ such that $g x_{1}=x_{2}$.
(a) (3 points) Let $x_{1}, x_{2} \in X$. Prove that the stabilizers of x_{1} and x_{2} are conjugate subgroups of G.
Solution: Choose an element $g_{0} \in G$ such that $g_{0} x_{1}=x_{2}$. Let G_{x} denote the stabilizer of x. I claim that $G_{x_{1}}=g_{0}^{-1} G_{x_{2}} g_{0}$. To see this, suppose first that $g \in G_{x_{2}}$. Then $g x_{2}=x_{2}$ and $g_{0}^{-1} g g_{0} x_{1}=g_{0}^{-1} g x_{2}=g_{0}^{-1} x_{2}=x_{1}$. We have proved that $g_{0}^{-1} G_{x_{2}} g_{0} \subseteq G_{x_{1}}$. Interchanging the roles of x_{1} and x_{2} one can prove in the same way that $g_{0} G_{x_{1}} g_{0}^{-1} \subseteq G_{x_{2}}$, which means that $G_{x_{1}} \subseteq g_{0}^{-1} G_{x_{2}} g_{0}$. Thus $G_{x_{1}}=g_{0}^{-1} G_{x_{2}} g_{0}$.
(b) (2 points) Suppose in addition that G is finite. Prove that there exists an element $g \in G$ that satisfies $g x \neq x$ for all $x \in X$ (in other words, prove that there exists an element of G that does not fix any element of X).
Solution: The statement is equivalent to proving that

$$
\bigcup_{x \in X} G_{x} \subsetneq G
$$

Let $|S|$ denote the number of elements in a set S. Since G is finite, it is enough to prove that

$$
\left|\bigcup_{x \in X} G_{x}\right|<|G|
$$

We know that the groups G_{x} are not pairwise disjoint, because they have at least the identity element in common. It follows that

$$
\left|\bigcup_{x \in X} G_{x}\right|<\sum_{x \in X}\left|G_{x}\right|
$$

Therefore it is enough to prove that

$$
\sum_{x \in X}\left|G_{x}\right| \leq|G| .
$$

By part (a) the stabilizer groups G_{x} are conjugate to each other. By the orbit-stabilizer theorem for any choice of $x_{0} \in X,|X|=\left[G: G_{x_{0}}\right]$. It follows that

$$
\sum_{x \in X}\left|G_{x}\right|=|X| \cdot\left|G_{x_{0}}\right|=\left[G: G_{x_{0}}\right]\left|G_{x_{0}}\right|=|G| .
$$

4. (a) (2 points) Prove that a group of order 56 can not be simple.

Solution: $56=8 \cdot 7$. By Sylow theorem n_{7} is either 1 or 8 . If $n_{7}=1$ then the group has a normal 7 -Sylow subgroup, and is not simple. Suppose $n_{7}=8$. Then the group has $6 \cdot 8=48$ elements of order 7 , and exactly 8 elements of order different from 7. It follows that there are enough elements for exactly one 2-Sylow subgroup of order 8. So in this case the group has a normal 2-Sylow subgroup. In any case, a group with 56 elements can not be simple.
(b) (3 points) Prove that a group of order 72 can not be simple.

Solution: Suppose G is a group with 72 elements. $72=8 \cdot 9$. By Sylow theorem, $n_{3}=1$ or 4 . If $n_{3}=1$ then G is not simple and we are done. Suppose $n_{3}=4$. Then G has four $3-$ Sylow subgroups. The action of G on the set of 3 -Sylow subgroups by conjugation induces a non-trivial homomorphism $G \rightarrow S_{4}$. Since S_{4} has 24 elements, this homomorphism can not be injective. Thus the kernel of this homomorphism is a proper, non-trivial subgroup of G, and G is not simple.
5. (a) (2 points) Let R be a ring, and I, J ideals of R. Suppose that $I \cap J$ is a prime ideal of R. Prove that either $I \subseteq J$ or $J \subseteq I$.
Solution: Suppose, by contradiction, that neither of the ideals I and J contains the other. We will prove that in this case $I \cap J$ is not a prime ideal.

There exist elements $x \in I \backslash J$ and $y \in J \backslash I$. Then $x y \in I$ because $x \in I$ and $x y \in J$ because $y \in J$. Thus $x y \in I \cap J$. But $x \notin I \cap J$ and $y \notin I \cap J$, so $I \cap J$ is not a prime ideal.
(b) (3 points) Let R be a ring that satisfies $x^{2}=x$ for all $x \in R$. Prove that R is commutative. Solution: First, we prove that for every $x \in R, x+x=0$. Indeed, by assumption $(x+x)^{2}=x+x$. Multiplying out and using the distributivity law we find that

$$
x^{2}+x^{2}+x^{2}+x^{2}=x+x
$$

By assumption $x^{2}=x$, so $x+x+x+x=x+x$, and therefore $x+x=0$. This means that $x=-x$ for all $x \in R$.
Next, let us use that for any $x, y \in R,(x+y)(x+y)=x+y$. Multiplying out once again we find that

$$
x^{2}+x y+y x+y^{2}=x+y
$$

Since $x^{2}=x$ and $y^{2}=y$, this equality simplifies to $x y+y x=0$. But $y x=-y x$, so $x y=y x$, for all $x, y \in R$.
6. Let \mathbb{F} be a field, and $\mathbb{F}[x]$ the ring of polynomials over \mathbb{F}. In this question you will consider the ideals $\left(x^{2}+1\right)$ and $\left(x^{2}-1\right)$ in $\mathbb{F}[x]$, and the quotient rings $\mathbb{F}[x] /\left(x^{2}+1\right)$ and $\mathbb{F}[x]\left(x^{2}-1\right)$. Be sure to justify your answers.
(a) (2 points) Suppose $\mathbb{F}=\mathbb{C}$ is the field of complex numbers. Are the rings $\mathbb{C}[x] /\left(x^{2}+1\right)$ and $\mathbb{C}[x] /\left(x^{2}-1\right)$ isomorphic?
Solution: Yes, because over \mathbb{C} we have $x^{2}-1=(x-1)(x+1)$ and $x^{2}+1=(x-i)(x+i)$. Recall that for any constant a, there is an isomorphism of rings $\mathbb{C}[x] /(x-a) \xrightarrow{\cong} \mathbb{C}$. Using the Chinese Remainder Theorem, we obtain isomorphisms of rings

$$
\begin{aligned}
& \mathbb{C}[x] /\left(x^{2}-1\right) \cong \mathbb{C}[x] /(x-1) \times \mathbb{C}[x] /(x+1) \cong \mathbb{C} \times \mathbb{C}, \\
& \mathbb{C}[x] /\left(x^{2}+1\right) \cong \mathbb{C}[x] /(x-i) \times \mathbb{C}[x] /(x+i) \cong \mathbb{C} \times \mathbb{C} .
\end{aligned}
$$

The right hand sides are the same, so the left hand sides are isomorphic.
(b) (3 points) Suppose $\mathbb{F}=\mathbb{F}_{3}$ is the field with three elements. Are the rings $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ and $\mathbb{F}_{3} /\left(x^{2}-1\right)$ isomorphic?
Solution: No. The polynomial $x^{2}+1$ does not have a root over \mathbb{F}_{3}. Since it is a quadratic polynomial, it follows that it is irreducible over \mathbb{F}_{3}. It follows that $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is an integral domain (a field even). On the other hand the polynomial $x^{2}-1=(x-1)(x+1)$ is reducible, and thus $\mathbb{F}_{3} /\left(x^{2}-1\right)$ is not an integral domain. It follows that the two rings are not isomorphic.

