- You may use the text (Dummit and Foote).
- You may not use class notes and/or any notes and study guides you have created.
- You may not use a calculator, a cell phone or computer.
- You may quote results that are proved in the book. When you do, state precisely the result that you are using, or give a precise pointer to the book.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

1. Let S_{5} be the group of permutations of the set $\{1,2,3,4,5\}$. Let $H \subset S_{5}$ be the subset consisting of permutations σ that satisfy $\sigma(3)=3$.
(a) (2 points) Prove that H is a subgroup of S_{5}.
(b) (1 point) Find the number of elements in H.
(c) (2 points) Is H a normal subgroup of S_{5} ?
2. (a) (2 points) Let G be a finite group and let \mathbb{Z} denote the additive group of integers. Prove that there are no non-trivial homomorphisms from G to \mathbb{Z}.
(b) (2 points) How many group homomorphisms are there from $\mathbb{Z} / 12$ to $\mathbb{Z} / 15$?
3. Let p be a prime.
(a) (2 points) Suppose G is any group and $N \triangleleft G$ is a normal subgroup of index p. Let $K \subset G$ be any subgroup. Prove that either $K \subset N$ or $K N=G$.
(b) (3 points) Suppose P is a p-group and $N \triangleleft P$ is a normal subgroup of order p. Prove that $N \subset Z(P)$, i.e., N is in the center of P.
4. (a) (3 points) Prove that every group of order 1225 is abelian. For your convenience: $1225=$ $5^{2} \cdot 7^{2}$
(b) (3 points) Prove that a group of order 224 can not be simple. For your convenience: $224=32 \cdot 7$.
5. (3 points) Let \mathbb{F} be a field.
(a) (2 points) Prove that there is an isomorphism of rings $\mathbb{F}[x, y] /\left(x-y^{2}\right) \cong \mathbb{F}[z]$.
(b) (3 points) Prove that the rings $\mathbb{F}[x, y] /\left(x-y^{2}\right)$ and $\mathbb{F}[x, y] /\left(x^{2}-y^{2}\right)$ are not isomorphic.
6. Let R be a commutative ring with a unit. Suppose that I and J are co-maximal ideals of R.
(a) (3 points) Prove that I and J^{2} are co-maximal ideals.
(b) (2 points) Is the assumption that R has a unit necessary in part (a)? Justify your answer with either an argument or a counterexample.
