MATEMATISKA INSTITUTIONEN Written exam in

STOCKHOLMS UNIVERSITET Advanced Real Analysis II,
Avd. Matematik MMB8039 (SF2744)
Examinator: Annemarie Luger (SU), May 24, 2017

Henrik Shahgholian (KTH) 9:00-14:00

30 points can be obtained from the written exam ((3 + 3) x 4 including bonus) and the oral exam (3 + 3).

Credit scale:
A= at least 26,5 points, B= at least 23 points, = at least 20 points,
D= at least 17,5 points, E= at least 15 points Fz= at least 13,5 points.

Important: If you intend to take the oral exam, email to luger@math.su.se no later than Friday 26/5.

Motivate your solutions carefully!!!

I-1 Let £ C R, and p the Lebesgue measure, with the property that

M(Ir(z)\E)zl%O, VzeE, Vr>0,

where I,.(z) = (2,7 + 2).

Prove that u(E) = 0.
Hint: Think of indefinit integrals, and that ¢’ = f a.e., when g is primitive of f, for integrable f.

I-2 State and prove Lebesgue decomposition theorem.

I-3 Let m > 0, and define

1 1
Ey 5:{O}U{1’2m73m’4m’”'}’ and Ey = Eo x [0,1].

Find the upper Minkowski dimension of Ey, in R and F; in R2.

Hint: Find the distance d, between two adjacent elements and then cover with balls of radius d,
then use the definition.

F-1 Let K be a compact metric space and denote by X := C'(K) the Banach space of continuous,
complex valued functions on K (equipped with the maximum norm) and fix a € X. Define
the operator A: X — X by

(Af)(t) == a(t)f(¢) for t € K.

(a) Determine o(A).
(b) Give a sufficient condition on a such that o,(A) # 0.
(c) Give an example of K and a for which o,(A) = 0.

F-2 Let H be a Hilbert space and B € B(#H) be a bounded linear operator.

(a) Show that the set o(B) is compact.
(b) Show that B = B* is a projection if and only if o(B) C {0,1}.

Hint: Theorems from the lecture can be used without proof, but it need to clear how they are
used!

Please turn!



F-3 Let H be a Hilbert space. An operator T' € B(H) is called normal if TT* = T*T.

(a) Show: A linear operator T is normal if and only if ||Tz| = | T*x|| for all x € H.
(b) Show that for normal operators the following hold:
i. ker(T) = ker(T™)
ii. ran(7') is dense if and only if T is injective.
iii. If Te = px for some z € H and p € C, then T*x = fx.

iv. If 4 and A are distinct eigenvalues of T', then the corresponding eigenvectors are
orthogonal.

After correction the marked exams can be picked up in studenterpeditionen, house 6 (SU).

Good luck!



Solution to problem I-1) Define f(z) = xg(z), and g(z) = foz f(y)dy. Then by Lebesgue
differentiation theorem we have ¢’ = f a.e. Now by definition, for each z

z+r z+r
d@ = [ = [ ey = () nE) -

= u(I()\ B)) = 1= (L) \ B) < 7o

As r tends to zero we obtain ¢’(z) < 1 for all z € E. This violates Lebesgue differentiation theorem,
unless p(E) = 0.
Solution to problem I-2) See the book
Solution to problem I-3a)

Falconer-Fractal Geometry. Mathematical Foundations and Applications- Page 33 of file. and
also page 36-37 of the file.

The distance between two points in the set Fy is approximately ;7" ~'. Hence for ¢ > 0 we
can cover the set Ey by approximately (1/€)!/™+! balls of radius e. So by definition of Minkowski
dimension (or Box dimension) we need

1

lim N (Ey, €)e® = lim (1/e)/™*1es =0
e—0 e—0

which is possible only if s > 1/(m + 1). Hence the infimum of all such s is indeed 1/(m + 1).

For more reading see: Falconer-Fractal Geometry. Mathematical Foundations and Applications,
Page 33 of file. and also page 36-37 of the file.
Solution to problem I-3b) Similar analysis for this case just adds one more dimension, and
we have (m 4 2)/(m + 1). You have to think that in the direction of y-axis you have to take 1/e
number of balls.
Remark)

Also note that as m gets larger the dimension decreases. Hence for points tending to the origin
exponentially, we must have zero dimension.
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