MATEMATISKA INSTITUTIONEN

 STOCKHOLMS UNIVERSITETAvd. Matematik
Examinator: Annemarie Luger (SU),
Henrik Shahgholian (KTH)

Written exam in
Advanced Real Analysis II,
MM8039 (SF2744)
May 24, 2017
9:00-14:00

30 points can be obtained from the written exam $((3+3) \times 4$ including bonus $)$ and the oral exam $(3+3)$.

Credit scale:

$A=$ at least 26,5 points, $\quad B=$ at least 23 points, $\quad C=$ at least 20 points,
$D=$ at least 17,5 points, $\quad E=$ at least 15 points $\quad F x=$ at least 13,5 points.
Important: If you intend to take the oral exam, email to luger@math.su.se no later than Friday 26/5.
Motivate your solutions carefully!!!

I-1 Let $E \subset \mathbf{R}$, and μ the Lebesgue measure, with the property that

$$
\mu\left(I_{r}(z) \backslash E\right) \geq \frac{r}{100}, \quad \forall z \in E, \quad \forall r>0
$$

where $I_{r}(z)=(z, r+z)$.
Prove that $\mu(E)=0$.
Hint: Think of indefinit integrals, and that $g^{\prime}=f$ a.e., when g is primitive of f, for integrable f.
I-2 State and prove Lebesgue decomposition theorem.
I-3 Let $m>0$, and define

$$
E_{0}:=\{0\} \cup\left\{1, \frac{1}{2^{m}}, \frac{1}{3^{m}}, \frac{1}{4^{m}}, \cdots\right\}, \quad \text { and } \quad E_{1}=E_{0} \times[0,1]
$$

Find the upper Minkowski dimension of E_{0}, in \mathbf{R} and E_{1} in \mathbf{R}^{2}.
Hint: Find the distance d, between two adjacent elements and then cover with balls of radius d, then use the definition.

F-1 Let K be a compact metric space and denote by $X:=C(K)$ the Banach space of continuous, complex valued functions on K (equipped with the maximum norm) and fix $a \in X$. Define the operator $A: X \rightarrow X$ by

$$
(A f)(t):=a(t) f(t) \text { for } t \in K
$$

(a) Determine $\sigma(A)$.
(b) Give a sufficient condition on a such that $\sigma_{p}(A) \neq \emptyset$.
(c) Give an example of K and a for which $\sigma_{p}(A)=\emptyset$.

F-2 Let \mathcal{H} be a Hilbert space and $B \in \mathcal{B}(\mathcal{H})$ be a bounded linear operator.
(a) Show that the set $\sigma(B)$ is compact.
(b) Show that $B=B^{*}$ is a projection if and only if $\sigma(B) \subset\{0,1\}$.

Hint: Theorems from the lecture can be used without proof, but it need to clear how they are used!

F-3 Let \mathcal{H} be a Hilbert space. An operator $T \in \mathcal{B}(\mathcal{H})$ is called normal if $T T^{*}=T^{*} T$.
(a) Show: A linear operator T is normal if and only if $\|T x\|=\left\|T^{*} x\right\|$ for all $x \in \mathcal{H}$.
(b) Show that for normal operators the following hold:
i. $\operatorname{ker}(T)=\operatorname{ker}\left(T^{*}\right)$
ii. $\operatorname{ran}(T)$ is dense if and only if T is injective.
iii. If $T x=\mu x$ for some $x \in \mathcal{H}$ and $\mu \in \mathbb{C}$, then $T^{*} x=\bar{\mu} x$.
iv. If μ and λ are distinct eigenvalues of T, then the corresponding eigenvectors are orthogonal.

After correction the marked exams can be picked up in studentexpeditionen, house 6 (SU).

Good luck!

Solution to problem I-1) Define $f(x)=\chi_{E}(x)$, and $g(x)=\int_{0}^{x} f(y) d y$. Then by Lebesgue differentiation theorem we have $g^{\prime}=f$ a.e. Now by definition, for each z

$$
\begin{aligned}
g^{\prime}(z) \approx & \frac{1}{r} \int_{z}^{z+r} f(y) d y=\frac{1}{r} \int_{z}^{z+r} \chi_{E}(y) d y=\frac{1}{r} \mu\left(I_{r}(z) \cap E\right)= \\
& \frac{1}{r}\left(r-\mu\left(I_{r}(z) \backslash E\right)\right)=1-\frac{1}{r} \mu\left(I_{r}(z) \backslash E\right)<\frac{99}{100} .
\end{aligned}
$$

As r tends to zero we obtain $g^{\prime}(z)<1$ for all $z \in E$. This violates Lebesgue differentiation theorem, unless $\mu(E)=0$.
Solution to problem I-2) See the book

Solution to problem I-3a)

Falconer-Fractal Geometry. Mathematical Foundations and Applications- Page 33 of file. and also page $36-37$ of the file.

The distance between two points in the set E_{0} is approximately j^{-m-1}. Hence for $\epsilon>0$ we can cover the set E_{0} by approximately $(1 / \epsilon)^{1 / m+1}$ balls of radius ϵ. So by definition of Minkowski dimension (or Box dimension) we need

$$
\lim _{\epsilon \rightarrow 0} N\left(E_{0}, \epsilon\right) \epsilon^{s}=\lim _{\epsilon \rightarrow 0}(1 / \epsilon)^{1 / m+1} \epsilon^{s}=0
$$

which is possible only if $s>1 /(m+1)$. Hence the infimum of all such s is indeed $1 /(m+1)$.
For more reading see: Falconer-Fractal Geometry. Mathematical Foundations and Applications, Page 33 of file. and also page 36-37 of the file.
Solution to problem I-3b) Similar analysis for this case just adds one more dimension, and we have $(m+2) /(m+1)$. You have to think that in the direction of y-axis you have to take $1 / \epsilon$ number of balls.

Remark)

Also note that as m gets larger the dimension decreases. Hence for points tending to the origin exponentially, we must have zero dimension.

Fl $\quad x:=C(K) \quad K$. compact metric space

$$
a \in x
$$

$$
(A \rho)(t):=a(t) f(t) \quad t \in K
$$

$a \lambda \in \mathbb{C}:(A-\lambda) f=g$

$$
(a(t)-\lambda) f(t)=g(t)
$$

1) $\lambda \notin \operatorname{ran} a \Rightarrow a(t)-\lambda \neq 0 \quad \forall t \in K$

$$
\Rightarrow f(t)=\frac{g(t)}{a(t)-\lambda} \in C(k)
$$

$\Rightarrow A-\lambda$ is boundedly invertible; $\lambda \in \rho(A)$
2) $\lambda \notin \operatorname{ran} a \Rightarrow \exists t_{0} \in K: a\left(t_{0}\right)=\lambda$

$$
\Rightarrow g\left(t_{0}\right)=0 \quad \text { i.e. } \quad(A-\lambda) f=g
$$

is not solvable for all $g \in C(k)$

$$
\Rightarrow \lambda \notin \rho(A)
$$

Answer. $\sigma(A)=\operatorname{rana}(=\{a(t): t \in K\})$
(b) $\lambda \in \sigma_{p}(A) \Leftrightarrow(a(t)-\lambda) f(t)=0$ hes a non-trivial solution
sufficient condition for $\lambda \in \sigma_{p}(A)$: \exists ball $B_{0} \subset K$ such that $\left.a\right|_{B_{0}} \equiv \lambda \quad$ (locally constant)
Hence, $\exists B_{1} \subseteq B_{0}$ and $f \in C(k)$ sue that $f(t)= \begin{cases}0 & t \neq B_{0} \\ 1 & t \in B_{1}\end{cases}$
ie. f is eigenvector
(c) $K=[0,1], a(t)=t \Rightarrow \sigma_{p}(A)=\varnothing$
$F-2 \quad B \in B(H)$
(a.) Show: $\sigma(B)$ is compact
(1) $\rho(B)$ is open (Thm. from the lecture)

$$
\Rightarrow \sigma(B)=\mathbb{C} \backslash \rho(B) \text { closed }
$$

(2) $\lambda \in \mathbb{C}$ with $|\lambda|>\|B\|$

$$
\Rightarrow(B-\lambda)=\lambda\left(\frac{1}{\lambda} B-I\right) \text { with }\left\|\frac{1}{\lambda} B\right\|<1
$$

is boundedly innertible (vou Neuman-sevies Theorem from ARA1)
$\Rightarrow \sigma(B)$ bounded
$\Rightarrow \sigma(B)$ compacl
(b) $B=B^{*}$. Show $B=B^{2} \Leftrightarrow \sigma(B) \subseteq\{0,1\}$
\Rightarrow Bprojection \Rightarrow if $x \in \mathcal{H}$, then $x=x_{11}+x_{1}$ where

$$
\begin{aligned}
& x_{11} \in \operatorname{ram} B \quad\left(\text { i.e. } B x_{11}=x_{11}\right) \\
& x_{1} \in \operatorname{ker} B
\end{aligned}
$$

$$
\begin{aligned}
& (B-\lambda) x=y \\
& (B-\lambda)\left(x_{11}+x_{1}\right)=y_{11}+y_{1} \\
& (1-\lambda) x_{1}-\lambda x_{1}=y_{11}+y_{1} \Leftrightarrow(1-\lambda) x_{11}=y_{11} \text { and }-\lambda x_{1}=y_{1}
\end{aligned}
$$

Hence: $\lambda \notin\{0,1\} \Rightarrow \lambda \in \rho(A)$

$$
\text { i.e. } \sigma(B) \subseteq\{0,1\}
$$

$\Leftarrow B=B^{*}$ and $\sigma(B) \subseteq\{0,1\}$
$\Rightarrow \quad B=\int_{\mathbb{R}} t d E_{t}=0 \cdot E_{0}+1 \cdot E_{1}$
theorem
orthogonal projections
$F-3 \quad T T^{*}=T^{*} T$ normal
(a) Show: T normal $\Leftrightarrow\|T x\|=\left\|T^{*} x\right\| \quad \forall x \in \mathcal{H}$

$$
\begin{aligned}
& \Rightarrow\|T x\|^{2}=\left(T_{x}, T_{x}\right)=\left(T^{*} T_{x}, x\right) \underset{\substack{\text { normal }}}{ }\left(T T^{*} x, x\right)=\left(T_{x}^{*} T_{x}^{*}\right) \cdot\| \|_{x}^{*} \|^{2} \\
& \Leftrightarrow\left(T^{*} T x, x\right)=\left(T T^{*} x, x\right)
\end{aligned}
$$

Show more generally: $A, B \in B(H) \quad A=A^{*}, B=B^{*}$

$$
\begin{aligned}
& \quad(A x, x)=(B x, x) \quad \forall x \in H \Rightarrow A=B \\
& =(A(x+y), x+y)=(B(x+y), x+y) \\
& \Rightarrow(A x, y)+(A y, x)=(B x, y)+(B y, x) \\
& \Rightarrow \operatorname{Re}(A x, y)=\operatorname{Re}(B x, y) \\
& \Rightarrow(A(x+i y), x+i y)=(B(x+i y), x+i y) \\
& \Rightarrow-(A x, y)+(A y, x)=-(B x, y)+(B y, x) \\
& \Rightarrow \operatorname{Im}(A x, y)=\operatorname{lm}(B x, y) \\
& (A x, y)=(B x, y) \quad \forall y, \forall x \\
& \Rightarrow A x=B x \quad \forall x \Rightarrow A=B
\end{aligned}
$$

(b) kert = kert* (follows directly from (a))
(c) $\operatorname{ran} T$ dense $\Leftrightarrow T$ inj.
$\left.\operatorname{ran} T \operatorname{dense} \Leftrightarrow(\operatorname{ran} T)^{1}=40\right\} \Leftrightarrow \operatorname{ker} T^{*}=\{0\} \Leftrightarrow \operatorname{ker} T=\{0\}$

$$
\begin{gather*}
(\operatorname{tanT})^{+}= \tag{b}\\
\text {Ker T* }
\end{gather*}
$$

d $T x=\mu x \quad$ i.e. $x \in \operatorname{ker}(T-\mu)=\operatorname{ker}\left(T^{*}-\bar{\mu}\right)$
(b)
i.e. $\quad T^{*} x=T^{*} \bar{\mu}$

$$
\begin{aligned}
& \text { e) } T_{x}=\lambda x, T y=\mu y \\
& \lambda(x, y)=(T x, y)=\left(x, T^{*} y\right)=(x, \bar{\mu} y)=\mu(x, y) \\
& \Rightarrow(x, y)=0 \quad \text { i.e. } \quad x \perp \mu \\
& \lambda \neq \mu
\end{aligned}
$$

