MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET	Written exam in Advanced Real Analysis II,
Avd. Matematik	MM8039 (SF2744)
Examinator: Annemarie Luger (SU),	May 24, 2017
Henrik Shahgholian (KTH)	9:00-14:00

30 points can be obtained from the written exam $((3+3) \times 4$ including bonus) and the oral exam (3+3).

Credit scale:		
$A = at \ least \ 26,5 \ points,$	B= at least 23 points,	C= at least 20 points,
D= at least 17,5 points,	$E=at\ least\ 15\ points$	$Fx = at \ least \ 13,5 \ points.$

Important: If you intend to take the oral exam, email to luger@math.su.se no later than Friday 26/5. Motivate your solutions carefully!!!

I-1 Let $E \subset \mathbf{R}$, and μ the Lebesgue measure, with the property that

$$\mu(I_r(z) \setminus E) \ge \frac{r}{100}, \quad \forall \ z \in E, \quad \forall \ r > 0,$$

where $I_r(z) = (z, r+z)$.

Prove that $\mu(E) = 0$. Hint: Think of indefinit integrals, and that g' = f a.e., when g is primitive of f, for integrable f.

I-2 State and prove Lebesgue decomposition theorem.

I-3 Let m > 0, and define

$$E_0 := \{0\} \cup \left\{1, \frac{1}{2^m}, \frac{1}{3^m}, \frac{1}{4^m}, \cdots\right\}, \quad \text{and} \quad E_1 = E_0 \times [0, 1].$$

Find the upper Minkowski dimension of E_0 , in **R** and E_1 in **R**².

Hint: Find the distance d, between two adjacent elements and then cover with balls of radius d, then use the definition.

F-1 Let K be a compact metric space and denote by X := C(K) the Banach space of continuous, complex valued functions on K (equipped with the maximum norm) and fix $a \in X$. Define the operator $A : X \to X$ by

$$(Af)(t) := a(t)f(t)$$
 for $t \in K$.

- (a) Determine $\sigma(A)$.
- (b) Give a sufficient condition on a such that $\sigma_p(A) \neq \emptyset$.
- (c) Give an example of K and a for which $\sigma_p(A) = \emptyset$.

F-2 Let \mathcal{H} be a Hilbert space and $B \in \mathcal{B}(\mathcal{H})$ be a bounded linear operator.

- (a) Show that the set $\sigma(B)$ is compact.
- (b) Show that $B = B^*$ is a projection if and only if $\sigma(B) \subset \{0, 1\}$.

Hint: Theorems from the lecture can be used without proof, but it need to clear how they are used!

Please turn!

- **F-3** Let \mathcal{H} be a Hilbert space. An operator $T \in \mathcal{B}(\mathcal{H})$ is called *normal* if $TT^* = T^*T$.
 - (a) Show: A linear operator T is normal if and only if $||Tx|| = ||T^*x||$ for all $x \in \mathcal{H}$.
 - (b) Show that for normal operators the following hold:
 - i. $\ker(T) = \ker(T^*)$
 - ii. ran(T) is dense if and only if T is injective.
 - iii. If $Tx = \mu x$ for some $x \in \mathcal{H}$ and $\mu \in \mathbb{C}$, then $T^*x = \overline{\mu}x$.
 - iv. If μ and λ are distinct eigenvalues of T, then the corresponding eigenvectors are orthogonal.

After correction the marked exams can be picked up in studentexpeditionen, house 6 (SU).

Good luck!

Solution to problem I-1) Define $f(x) = \chi_E(x)$, and $g(x) = \int_0^x f(y) dy$. Then by Lebesgue differentiation theorem we have g' = f a.e. Now by definition, for each z

$$g'(z) \approx \frac{1}{r} \int_{z}^{z+r} f(y) dy = \frac{1}{r} \int_{z}^{z+r} \chi_{E}(y) dy = \frac{1}{r} \mu(I_{r}(z) \cap E) = \frac{1}{r} (r - \mu(I_{r}(z) \setminus E)) = 1 - \frac{1}{r} \mu(I_{r}(z) \setminus E) < \frac{99}{100}.$$

As r tends to zero we obtain g'(z) < 1 for all $z \in E$. This violates Lebesgue differentiation theorem, unless $\mu(E) = 0$.

Solution to problem I-2) See the book

Solution to problem I-3a)

Falconer-Fractal Geometry. Mathematical Foundations and Applications- Page 33 of file. and also page 36-37 of the file.

The distance between two points in the set E_0 is approximately j^{-m-1} . Hence for $\epsilon > 0$ we can cover the set E_0 by approximately $(1/\epsilon)^{1/m+1}$ balls of radius ϵ . So by definition of Minkowski dimension (or Box dimension) we need

$$\lim_{\epsilon \to 0} N(E_0, \epsilon) \epsilon^s = \lim_{\epsilon \to 0} (1/\epsilon)^{1/m+1} \epsilon^s = 0$$

which is possible only if s > 1/(m+1). Hence the infimum of all such s is indeed 1/(m+1).

For more reading see: Falconer-Fractal Geometry. Mathematical Foundations and Applications, Page 33 of file. and also page 36-37 of the file.

Solution to problem I-3b) Similar analysis for this case just adds one more dimension, and we have (m+2)/(m+1). You have to think that in the direction of y-axis you have to take $1/\epsilon$ number of balls.

Remark)

Also note that as m gets larger the dimension decreases. Hence for points tending to the origin exponentially, we must have zero dimension.

F1 X:= C(K) K. compact metric space

$$a \in X$$

 $(A_{f}^{(1)}(t) := a(t)f(t) t \in K$
 $(a \to c \in (: (A - \lambda) \psi = g)$
 $(a(t) - \lambda)\psi(t) = g(t)$
 $1) \lambda \notin ran a \Rightarrow a(t) - \lambda \neq 0 \forall t \in K$
 $=) \psi(t) = \frac{g(t)}{a(t) - \lambda} \in C(K)$
 $\Rightarrow A - \lambda \quad is boundedly innertible; $\lambda \in g(A)$
 $i) \lambda \notin ran a \Rightarrow \exists t_{i} \in K : a(t_{i}) = \lambda$
 $\Rightarrow g(t_{i}) = 0 \quad i.e. (A - \lambda)f = g$
 $is not solvable for all $g \in C(K)$
 $=) \lambda \notin g(A)$
Ausber $\cdot \in (A) = ran a (= f a(t_{i}) : t \in K \})$
 $b) \lambda \in \sigma_{p}(A) \iff (a(t_{i}) - \lambda)\psi(t) = 0$ has a non-trivial
solution
sufficient condition for $\lambda \in \sigma_{p}(A)$; \exists ball $B_{0} \in K$ such that
 $A|_{B_{0}} = \lambda (locally constant)$
Hence, $\exists B_{0} \in B_{0}$ and $f \in C(K)$ sult that $f(t_{0}) = \begin{cases} 0 & t \neq B_{0} \\ -1 & t \in B_{1} \end{cases}$$$

F-2
$$B \in B(H)$$

(a) Show: $\sigma(B)$ is compact
(d) $S(B)$ is open (the from the leduce)
 $\Rightarrow \sigma(B) = C \setminus S(B)$ closed
(e) $\lambda \in C$ with $|\lambda| > ||B||$
 $\Rightarrow (B - \lambda) = \lambda (\frac{4}{\lambda} B - E)$ with $||\frac{4}{\lambda} B|| < 1$
is boundedly invertible (non Neuman-series
Theorem from ARA1)
 $\Rightarrow \sigma(B)$ bounded
 $\Rightarrow \sigma(B)$ compact
(b) $B = B^*$. Show $B = B^2 \Rightarrow \sigma(B) \leq \{0, 1\}$
 $\Rightarrow B$ projection $\Rightarrow if x \in H$, then $x = x_1 + x_1$ where
 $x_1 \in ran B$ (i.e. $Bx_1 = x_1$)
 $x_1 \in ker B$
 $(3 - \lambda)x = y$
 $(B - \lambda)(x_1 + x_1) = y_1 + y_1$
 $(4 - \lambda)x_1 - \lambda x_1 = y_1 + y_1 (=> (A - \lambda)x_1 = y_1$ and $-\lambda x_1 = y_1$
Hence: $\lambda \notin \{0, 1\} = \lambda \notin S(A)$
i.e. $\sigma(B) \in \{0, 4\}$

(b)
$$keT = keT^*$$
 (follows directly from (a))
(c) rant dense (=) T inj.
rant dense (=) $(ranT)^{\perp} = f_0$ (=) $kerT^* = f_0$ (=) $kerT = f_0$ (b)
 $(ronT)^{\perp} = kerT^*$
(b)
(c) $Tx = \mu \times$ i.e., $x \in ker(T - \mu) = ker(T^* - \mu)$
(b)
(c)
(c) $T^* = T^* = T^* = T^*$

$$L, e, \quad T^* X = T^* \mu$$

(e) $T_{X} = \lambda x$, $T_{y} = \mu y$ $\lambda(x_1y) = (Tx_1y) = (x_1T^*y) = (x_1\overline{\mu}y) = \mu(x_1y)$ $=) (x_1 y) = 0 \quad i.e. \quad x \perp \mu$ $\lambda \neq \mu$