MATEMATISKA INSTITUTIONEN	Written exam in
STOCKHOLMS UNIVERSITET	Advanced Real Analysis II,
Avd. Matematik	MM8039 (SF2744)
Examinator: Annemarie Luger (SU),	August 24, 2017
Henrik Shahgholian (KTH)	9:00-14:00

30 points can be obtained from the written exam $((3+3) \times 4$ including bonus) and the oral exam (3+3).

Credit scale:		
$A = at \ least \ 26,5 \ points,$	B= at least 23 points,	C= at least 20 points,
D= at least 17,5 points,	$E=at\ least\ 15\ points$	$Fx = at \ least \ 13,5 \ points.$

Important: If you intend to take the oral exam, email to luger@math.su.se no later than Friday 25/8.

Motivate your solutions carefully!!!

I-1 Let $\mu_k = \frac{1}{k} \sum_{j=1}^k \delta_{j/k}$, where $\delta_{j/k}$ is the Dirac measure with support at j/k. Prove that μ_k converges weakly to the Lebesgue measure on [0, 1].

i.e.,

$$\lim_{k} \mu_k(g) = \int_0^1 g(x) dx$$

for all continuous functions g on [0, 1].

- I-2 State and prove the Radon-Nikodym theorem.
- I-3 Define

$$E = \left\{ (0,0), (\frac{1}{m},0), (0,\frac{1}{n}), (\frac{1}{m},\frac{1}{n}) : m, n = 1, 2, 3, \cdots \right\}$$

Find the lower and upper Minkowski dimension of this set.

F-1 Let K be a compact metric space and denote by X := C(K) the Banach space of continuous, complex valued functions on K (equipped with the maximum norm) and fix $a \in X$. Define the operator $A : X \to X$ by

$$(Af)(t) := a(t)f(t)$$
 for $t \in K$.

- (a) Determine $\sigma(A)$.
- (b) Give a sufficient condition on a such that $\sigma_p(A) \neq \emptyset$.
- (c) Give an example of K and a for which $\sigma_p(A) = \emptyset$.

F-2 Let \mathcal{H} be a Hilbert space and $B \in \mathcal{B}(\mathcal{H})$ be a bounded linear operator.

- (a) Show that the set $\sigma(B)$ is compact.
- (b) Show that $B = B^*$ is a projection if and only if $\sigma(B) \subset \{0, 1\}$.

Hint: Theorems from the lecture can be used without proof, but it need to clear how they are used!

Please turn!

- **F-3** Let \mathcal{H} be a Hilbert space. An operator $T \in \mathcal{B}(\mathcal{H})$ is called *normal* if $TT^* = T^*T$.
 - (a) Show: A linear operator T is normal if and only if $||Tx|| = ||T^*x||$ for all $x \in \mathcal{H}$.
 - (b) Show that for normal operators the following hold:
 - i. $\ker(T) = \ker(T^*)$
 - ii. ran(T) is dense if and only if T is injective.
 - iii. If $Tx = \mu x$ for some $x \in \mathcal{H}$ and $\mu \in \mathbb{C}$, then $T^*x = \overline{\mu}x$.
 - iv. If μ and λ are distinct eigenvalues of T, then the corresponding eigenvectors are orthogonal.

After correction the marked exams can be picked up in studentexpeditionen, house 6 (SU).

Good luck!