## MATEMATISKA INSTITUTIONEN

 STOCKHOLMS UNIVERSITETAvd. Matematik
Examinator: Annemarie Luger (SU),
Henrik Shahgholian (KTH)

Written exam in
Advanced Real Analysis II,
MM8039 (SF2744)
August 24, 2017
9:00-14:00

30 points can be obtained from the written exam $((3+3) \times 4$ including bonus $)$ and the oral exam $(3+3)$.

## Credit scale:

$A=$ at least 26,5 points,$\quad B=$ at least 23 points, $\quad C=$ at least 20 points,
$D=$ at least 17,5 points, $\quad E=$ at least 15 points $\quad F x=$ at least 13,5 points.
Important: If you intend to take the oral exam, email to luger@math.su.se no later than Friday 25/8.
Motivate your solutions carefully!!!
I-1 Let $\mu_{k}=\frac{1}{k} \sum_{j=1}^{k} \delta_{j / k}$, where $\delta_{j / k}$ is the Dirac measure with support at $j / k$. Prove that $\mu_{k}$ converges weakly to the Lebesgue measure on $[0,1]$.
i.e.,

$$
\lim _{k} \mu_{k}(g)=\int_{0}^{1} g(x) d x
$$

for all continuous functions $g$ on $[0,1]$.
I-2 State and prove the Radon-Nikodym theorem.
I-3 Define

$$
E=\left\{(0,0),\left(\frac{1}{m}, 0\right),\left(0, \frac{1}{n}\right),\left(\frac{1}{m}, \frac{1}{n}\right): m, n=1,2,3, \cdots\right\}
$$

Find the lower and upper Minkowski dimension of this set.
F-1 Let $K$ be a compact metric space and denote by $X:=C(K)$ the Banach space of continuous, complex valued functions on $K$ (equipped with the maximum norm) and fix $a \in X$. Define the operator $A: X \rightarrow X$ by

$$
(A f)(t):=a(t) f(t) \text { for } t \in K
$$

(a) Determine $\sigma(A)$.
(b) Give a sufficient condition on $a$ such that $\sigma_{p}(A) \neq \emptyset$.
(c) Give an example of $K$ and $a$ for which $\sigma_{p}(A)=\emptyset$.

F-2 Let $\mathcal{H}$ be a Hilbert space and $B \in \mathcal{B}(\mathcal{H})$ be a bounded linear operator.
(a) Show that the set $\sigma(B)$ is compact.
(b) Show that $B=B^{*}$ is a projection if and only if $\sigma(B) \subset\{0,1\}$.

Hint: Theorems from the lecture can be used without proof, but it need to clear how they are used!

F-3 Let $\mathcal{H}$ be a Hilbert space. An operator $T \in \mathcal{B}(\mathcal{H})$ is called normal if $T T^{*}=T^{*} T$.
(a) Show: A linear operator $T$ is normal if and only if $\|T x\|=\left\|T^{*} x\right\|$ for all $x \in \mathcal{H}$.
(b) Show that for normal operators the following hold:
i. $\operatorname{ker}(T)=\operatorname{ker}\left(T^{*}\right)$
ii. $\operatorname{ran}(T)$ is dense if and only if $T$ is injective.
iii. If $T x=\mu x$ for some $x \in \mathcal{H}$ and $\mu \in \mathbb{C}$, then $T^{*} x=\bar{\mu} x$.
iv. If $\mu$ and $\lambda$ are distinct eigenvalues of $T$, then the corresponding eigenvectors are orthogonal.

After correction the marked exams can be picked up in studentexpeditionen, house 6 (SU).

## Good luck!

