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Credit scale: A maximum of 30 points can be obtained from the written exam including bonus
from Homework: The written exam give a maximum of 24 points (3 + 3)× 4. The homework gives
a maximum of 6 points (3 + 3). Each question has a maximum of 4 points, and grading is set
according to:

A= at least 26,5 points
B= at least 23 points

C= at least 20 points
D= at least 17,5 points

E= at least 15 points
Fx= at least 13,5 points.

I-1. Let µ be the Lebesgue-Stieltjes measure associated with f(x) = x+ χ{0}(x), i.e.

µ(E) =

∫
E

dF, for all Lebesgue measurable sets E ⊂ R.

Find the Lebesgue decomposition of µ with respect to Lebesgue measure on R.

I-2. State and prove the Radon-Nikodym theorem.

I-3. Let (X,µ) be a σ-finite measure space and 1 < p < ∞, with 1/p + 1/q = 1. Prove that the
conjugate of Lp(X,µ) is Lq(X,µ).

F-1. (a) Let X,Y be two Banach spaces. Given T ∈ B(X,Y ), how does the adjoint T× is
defined? Prove that ‖T×‖ = ‖T‖?

(b) Consider the operator T defined for f ∈ L4/3([0, 1]) by

Tf(x) =

∫ 1

0

eixyf(y)dy.

Show that T ∈ B(L4/3([0, 1])) and calculate its adjoint.

F-2. Let X be a Banach space, and let T ∈ B(X).

(a) Give the definition of the set of regular points ρ(T ), of T . For all µ ∈ ρ(T ), give the
definition of the resolvent operator R(µ).

(b) Show that ρ(T ) is an open set in C and prove that for all λ, µ ∈ ρ(T ) one has

R(µ)R(ν) = R(ν)R(µ).

F-3. Let

K(x, y) =

{
y(1− x) if 0 ≤ y ≤ x ≤ 1,

x(1− y) if 0 ≤ x < y ≤ 1,

and f̃(x) =
∫ 1

0
K(x, y)f(y)dy. Define

T1 : C [0, 1]→ C [0, 1], T2 : L2[0, 1]→ L2[0, 1]

by Tif = f̃ , for i = 1, 2.

(a) Are T1 and/or T2 compact? Is σ(T1) = σ(T2)? Detailed motivation is needed.

(b) Determine the non-zero eigenvalues of T2 and their respective multiplicity. Give the
spectral representation of T2.
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Suggestions for solutions

Solution to problem 1) The Lebsgue decomposition of µ is δ0 + dx. To justify this one
needs to apply µ to any open interval (a, b) to arrive at µ(a, b) = b − a + 1 if 0 ∈ (a, b), and
otherwise µ(a, b) = b − a. All to all one obtains (δ0 + dx)(a, b) = F (b) − F (a) and similarly
µ(a, b) = F (b)− F (a), and the uniqueness gives the representation µ = δ0 + dx.
Solution to problem 2, 3) See the text book.
Solution to problem 4)

1. See the lecture notes of the course.

2. Clearly Tf(x) ∈ L∞[0, 1] ⊂ L4/3[0, 1].

We know we can identify (L4/3)∗ with L4, in the sense that for all Λ ∈ (L4/3)∗, there exists
gΛ ∈ L4 such that

Λ(f) :=

∫ 1

0

f(y)gΛ(y)dy.

In this way, for all g ∈ L4 = (L4/3)∗ and for all f ∈ L4/3

(T×g)(f) := g(Tf) =

∫ 1

0

Tf(y)g(y)dy =

∫ 1

0

f(x)

∫ 1

0

eiyxg(y)dydx.

So we have that

T×g(x) =

∫ 1

0

eiyxg(y)dy = Tg(x).

Solution to problem 5)

1. See the lecture notes of the course.

2. See the lecture notes of the course.

Solution to problem 6)

1. Observe that
K(x, y) ∈ C ([0, 1]2,R) ⊂ L2([0, 1]2).

and also that it satisfies
K(x, y) = K(y, x) = K(y, x).

So it follows that T1 is a Fredholm operator, and hence compact, as well as that T2 is a
self-adjoint Hilbert-Schmidt operator, and hence its is compact.

In particular we know that
σ(Tj) \ {0} = σp(Tj) \ {0}

for j = 1, 2, and that {0} is the only possible element if the continuous spectrum of these
operators.

Moreover, since these operators are compact between infinite dimensional spaces, they can’t
be invertible, so 0 ∈ σ(Tj).

We can explicitly write

f̃(x) = (1− x)

∫ x

0

yf(y)dy + x

∫ 1

x

(1− y)f(y)dy.

Hence, if f ∈ L2(R), it follows by the DCT, that f̃ is continuous. In particular, by a bootstrap
argument, any eigenvector of non-zero eigenvalue, of either T1 or T2, is a smooth function.
So, it follows that

σp(T1) \ {0} = σp(T2) \ {0}.



We can also observe that if f is an igenvector of eigenvalue {0} of either operator, differen-
tiating twice we see that f must satisfy that

0 = −
∫ x

0

yf(y)dy +

∫ 1

x

f(y)(1− y)dy,

and that
0 = −xf(x) + (x− 1)f(x) = −f(x),

for a.e. x ∈ [0, 1]. This implies that f ≡ 0. In other words 0 6∈ σp(Tj).

As a consequence, we have that
σ(T1) = σ(T2).

2. Now, if λ ∈ σp(T1) \ {0}, we have that f must satisfy the second order ODE

λf ′′(x) = −f(x),

with boundary conditions f(1) = 0 and f(0) = 0. The non-trivial solutions of this BVP are
given by constant multiples of

fk(x) = sin(kπx), k = 1, 2, 3 . . . ,

where λk = (kπ)−2, which are eigenvalues of multiplicity one.

A calculation shows ∫ 1

0

fk(x)2dx =
1

2
,

and we know that two eigenvectors of different eigenvalues are orthogonal to each other.
Hence

gk(x) =
√

2 sin(kπx),

form an orthonormal system in L2[0, 1].

By the Hilbert-Schmidt theorem, since we have shown that kerT2 = {0}, we have that
{gk}k≥1 is a orthonormal basis of L2[0, 1]. And we also have that for all f ∈ L2[0, 1]

T2f(x) =
∑
k≥1

2

k2π2
〈f, fk〉 sin(kπx),

where

〈f, fk〉 =

∫ 1

0

f(x) sin(kπx)dx.


