STOCKHOLM UNIVERSITY Department of Mathematics MM8039 (SF2744) Examinators: Salvador Rodríguez-López Henrik Shahgholian

Resit Written Exam Advanced Real Analysis II 19 August, 2019 09:00-14:00

Credit scale: A maximum of 30 points can be obtained from the written exam including bonus from Homework: The written exam give a maximum of 24 points $(3+3) \times 4$. The homework gives a maximum of 6 points (3+3). Each question has a maximum of 4 points, and grading is set according to:

A = at least 26,5 points	C = at least 20 points	E= at least 15 points
B= at least 23 points	D = at least 17,5 points	Fx = at least 13,5 points.

I-1. Let μ be the Lebesgue-Stieltjes measure associated with $f(x) = x + \chi_{\{0\}}(x)$, i.e.

$$\mu(E) = \int_E dF$$
, for all Lebesgue measurable sets $E \subset \mathbb{R}$.

Find the Lebesgue decomposition of μ with respect to Lebesgue measure on \mathbb{R} .

- I-2. State and prove the Radon-Nikodym theorem.
- **I-3.** Let (X, μ) be a σ -finite measure space and 1 , with <math>1/p + 1/q = 1. Prove that the conjugate of $L^p(X, \mu)$ is $L^q(X, \mu)$.
- **F-1.** (a) Let X, Y be two Banach spaces. Given $T \in \mathscr{B}(X, Y)$, how does the adjoint T^{\times} is defined? Prove that $||T^{\times}|| = ||T||$?
 - (b) Consider the operator T defined for $f \in L^{4/3}([0,1])$ by

$$Tf(x) = \int_0^1 e^{ixy} f(y) \mathrm{d}y.$$

Show that $T \in \mathscr{B}(L^{4/3}([0,1]))$ and calculate its adjoint.

- **F-2.** Let X be a Banach space, and let $T \in \mathscr{B}(X)$.
 - (a) Give the definition of the set of regular points $\rho(T)$, of T. For all $\mu \in \rho(T)$, give the definition of the resolvent operator $R(\mu)$.
 - (b) Show that $\rho(T)$ is an open set in \mathbb{C} and prove that for all $\lambda, \mu \in \rho(T)$ one has

$$R(\mu)R(\nu) = R(\nu)R(\mu).$$

F-3. Let

$$K(x,y) = \begin{cases} y(1-x) & \text{if } 0 \le y \le x \le 1, \\ x(1-y) & \text{if } 0 \le x < y \le 1, \end{cases}$$

and $\tilde{f}(x) = \int_0^1 K(x,y) f(y) \mathrm{d} y.$ Define

$$T_1 : \mathscr{C}[0,1] \to \mathscr{C}[0,1], \qquad T_2 : L^2[0,1] \to L^2[0,1]$$

by $T_i f = \tilde{f}$, for i = 1, 2.

- (a) Are T_1 and/or T_2 compact? Is $\sigma(T_1) = \sigma(T_2)$? Detailed motivation is needed.
- (b) Determine the non-zero eigenvalues of T_2 and their respective multiplicity. Give the spectral representation of T_2 .

Suggestions for solutions

Solution to problem 1) The Lebsgue decomposition of μ is $\delta_0 + dx$. To justify this one needs to apply μ to any open interval (a, b) to arrive at $\mu(a, b) = b - a + 1$ if $0 \in (a, b)$, and otherwise $\mu(a, b) = b - a$. All to all one obtains $(\delta_0 + dx)(a, b) = F(b) - F(a)$ and similarly $\mu(a, b) = F(b) - F(a)$, and the uniqueness gives the representation $\mu = \delta_0 + dx$. Solution to problem 2, 3) See the text book.

- 1. See the lecture notes of the course.
- 2. Clearly $Tf(x) \in L^{\infty}[0,1] \subset L^{4/3}[0,1]$.

We know we can identify $(L^{4/3})^*$ with L^4 , in the sense that for all $\Lambda \in (L^{4/3})^*$, there exists $g_{\Lambda} \in L^4$ such that

$$\Lambda(f) := \int_0^1 f(y) g_{\Lambda}(y) \mathrm{d}y$$

In this way, for all $g \in L^4 = (L^{4/3})^*$ and for all $f \in L^{4/3}$

$$(T^{\times}g)(f) := g(Tf) = \int_0^1 Tf(y)g(y)dy = \int_0^1 f(x) \int_0^1 e^{iyx}g(y)dydx$$

So we have that

$$T^{\times}g(x) = \int_0^1 e^{iyx}g(y)\mathrm{d}y = Tg(x).$$

Solution to problem 5)

- 1. See the lecture notes of the course.
- 2. See the lecture notes of the course.

Solution to problem 6)

1. Observe that

$$K(x,y) \in \mathscr{C}([0,1]^2,\mathbb{R}) \subset L^2([0,1]^2).$$

and also that it satisfies

$$K(x,y) = K(y,x) = \overline{K(y,x)}.$$

So it follows that T_1 is a Fredholm operator, and hence compact, as well as that T_2 is a self-adjoint Hilbert-Schmidt operator, and hence its is compact.

In particular we know that

$$\sigma(T_j) \setminus \{0\} = \sigma_p(T_j) \setminus \{0\}$$

for j = 1, 2, and that $\{0\}$ is the only possible element if the continuous spectrum of these operators.

Moreover, since these operators are compact between infinite dimensional spaces, they can't be invertible, so $0 \in \sigma(T_j)$.

We can explicitly write

$$\tilde{f}(x) = (1-x) \int_0^x y f(y) dy + x \int_x^1 (1-y) f(y) dy.$$

Hence, if $f \in L^2(\mathbb{R})$, it follows by the DCT, that \tilde{f} is continuous. In particular, by a bootstrap argument, any eigenvector of non-zero eigenvalue, of either T_1 or T_2 , is a smooth function. So, it follows that

$$\sigma_p(T_1) \setminus \{0\} = \sigma_p(T_2) \setminus \{0\}.$$

We can also observe that if f is an igenvector of eigenvalue $\{0\}$ of either operator, differentiating twice we see that f must satisfy that

$$0 = -\int_0^x yf(y) dy + \int_x^1 f(y)(1-y) dy.$$

and that

$$0 = -xf(x) + (x - 1)f(x) = -f(x),$$

for a.e. $x \in [0, 1]$. This implies that $f \equiv 0$. In other words $0 \notin \sigma_p(T_j)$.

As a consequence, we have that

$$\sigma(T_1) = \sigma(T_2).$$

2. Now, if $\lambda \in \sigma_p(T_1) \setminus \{0\}$, we have that f must satisfy the second order ODE

$$\lambda f''(x) = -f(x),$$

with boundary conditions f(1) = 0 and f(0) = 0. The non-trivial solutions of this BVP are given by constant multiples of

$$f_k(x) = \sin(k\pi x), \qquad k = 1, 2, 3...$$

where $\lambda_k = (k\pi)^{-2}$, which are eigenvalues of multiplicity one. A calculation shows

$$\int_0^1 f_k(x)^2 \mathrm{d}x = \frac{1}{2},$$

and we know that two eigenvectors of different eigenvalues are orthogonal to each other. Hence

$$g_k(x) = \sqrt{2}\sin(k\pi x),$$

form an orthonormal system in $L^2[0,1]$.

By the Hilbert-Schmidt theorem, since we have shown that ker $T_2 = \{0\}$, we have that $\{g_k\}_{k\geq 1}$ is a orthonormal basis of $L^2[0,1]$. And we also have that for all $f \in L^2[0,1]$

$$T_2 f(x) = \sum_{k \ge 1} \frac{2}{k^2 \pi^2} \langle f, f_k \rangle \sin(k\pi x),$$

where

$$\langle f, f_k \rangle = \int_0^1 f(x) \sin(k\pi x) \mathrm{d}x.$$