STOCKHOLM UNIVERSITY

Department of Mathematics
MM8039 (SF2744)
Examinators: Salvador Rodríguez-López
Henrik Shahgholian

Resit Written Exam
Advanced Real Analysis II
19 August, 2019
09:00-14:00

Credit scale: A maximum of 30 points can be obtained from the written exam including bonus from Homework: The written exam give a maximum of 24 points $(3+3) \times 4$. The homework gives a maximum of 6 points $(3+3)$. Each question has a maximum of 4 points, and grading is set according to:
$\mathrm{A}=\mathrm{at}$ least 26,5 points
$\mathrm{B}=$ at least 23 points
$\mathrm{C}=$ at least 20 points
$\mathrm{D}=$ at least 17,5 points
$\mathrm{E}=$ at least 15 points
$\mathrm{Fx}=$ at least 13,5 points.

I-1. Let μ be the Lebesgue-Stieltjes measure associated with $f(x)=x+\chi_{\{0\}}(x)$, i.e.

$$
\mu(E)=\int_{E} d F, \quad \text { for all Lebesgue measurable sets } E \subset \mathbb{R}
$$

Find the Lebesgue decomposition of μ with respect to Lebesgue measure on \mathbb{R}.
I-2. State and prove the Radon-Nikodym theorem.
I-3. Let (X, μ) be a σ-finite measure space and $1<p<\infty$, with $1 / p+1 / q=1$. Prove that the conjugate of $L^{p}(X, \mu)$ is $L^{q}(X, \mu)$.

F-1. (a) Let X, Y be two Banach spaces. Given $T \in \mathscr{B}(X, Y)$, how does the adjoint T^{\times}is defined? Prove that $\left\|T^{\times}\right\|=\|T\|$?
(b) Consider the operator T defined for $f \in L^{4 / 3}([0,1])$ by

$$
T f(x)=\int_{0}^{1} e^{i x y} f(y) \mathrm{d} y
$$

Show that $T \in \mathscr{B}\left(L^{4 / 3}([0,1])\right)$ and calculate its adjoint.
F-2. Let X be a Banach space, and let $T \in \mathscr{B}(X)$.
(a) Give the definition of the set of regular points $\rho(T)$, of T. For all $\mu \in \rho(T)$, give the definition of the resolvent operator $R(\mu)$.
(b) Show that $\rho(T)$ is an open set in \mathbb{C} and prove that for all $\lambda, \mu \in \rho(T)$ one has

$$
R(\mu) R(\nu)=R(\nu) R(\mu)
$$

F-3. Let

$$
K(x, y)= \begin{cases}y(1-x) & \text { if } 0 \leq y \leq x \leq 1 \\ x(1-y) & \text { if } 0 \leq x<y \leq 1\end{cases}
$$

and $\tilde{f}(x)=\int_{0}^{1} K(x, y) f(y) \mathrm{d} y$. Define

$$
T_{1}: \mathscr{C}[0,1] \rightarrow \mathscr{C}[0,1], \quad T_{2}: L^{2}[0,1] \rightarrow L^{2}[0,1]
$$

by $T_{i} f=\tilde{f}$, for $i=1,2$.
(a) Are T_{1} and/or T_{2} compact? Is $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$? Detailed motivation is needed.
(b) Determine the non-zero eigenvalues of T_{2} and their respective multiplicity. Give the spectral representation of T_{2}.

Suggestions for solutions

Solution to problem 1) The Lebsgue decomposition of μ is $\delta_{0}+d x$. To justify this one needs to apply μ to any open interval (a, b) to arrive at $\mu(a, b)=b-a+1$ if $0 \in(a, b)$, and otherwise $\mu(a, b)=b-a$. All to all one obtains $\left(\delta_{0}+d x\right)(a, b)=F(b)-F(a)$ and similarly $\mu(a, b)=F(b)-F(a)$, and the uniqueness gives the representation $\mu=\delta_{0}+d x$.
Solution to problem 2, 3) See the text book.

Solution to problem 4)

1. See the lecture notes of the course.
2. Clearly $T f(x) \in L^{\infty}[0,1] \subset L^{4 / 3}[0,1]$.

We know we can identify $\left(L^{4 / 3}\right)^{*}$ with L^{4}, in the sense that for all $\Lambda \in\left(L^{4 / 3}\right)^{*}$, there exists $g_{\Lambda} \in L^{4}$ such that

$$
\Lambda(f):=\int_{0}^{1} f(y) g_{\Lambda}(y) \mathrm{d} y
$$

In this way, for all $g \in L^{4}=\left(L^{4 / 3}\right)^{*}$ and for all $f \in L^{4 / 3}$

$$
\left(T^{\times} g\right)(f):=g(T f)=\int_{0}^{1} T f(y) g(y) \mathrm{d} y=\int_{0}^{1} f(x) \int_{0}^{1} e^{i y x} g(y) \mathrm{d} y \mathrm{~d} x
$$

So we have that

$$
T^{\times} g(x)=\int_{0}^{1} e^{i y x} g(y) \mathrm{d} y=T g(x) .
$$

Solution to problem 5)

1. See the lecture notes of the course.
2. See the lecture notes of the course.

Solution to problem 6)

1. Observe that

$$
K(x, y) \in \mathscr{C}\left([0,1]^{2}, \mathbb{R}\right) \subset L^{2}\left([0,1]^{2}\right)
$$

and also that it satisfies

$$
K(x, y)=K(y, x)=\overline{K(y, x)} .
$$

So it follows that T_{1} is a Fredholm operator, and hence compact, as well as that T_{2} is a self-adjoint Hilbert-Schmidt operator, and hence its is compact.
In particular we know that

$$
\sigma\left(T_{j}\right) \backslash\{0\}=\sigma_{p}\left(T_{j}\right) \backslash\{0\}
$$

for $j=1,2$, and that $\{0\}$ is the only possible element if the continuous spectrum of these operators.
Moreover, since these operators are compact between infinite dimensional spaces, they can't be invertible, so $0 \in \sigma\left(T_{j}\right)$.
We can explicitly write

$$
\tilde{f}(x)=(1-x) \int_{0}^{x} y f(y) \mathrm{d} y+x \int_{x}^{1}(1-y) f(y) \mathrm{d} y .
$$

Hence, if $f \in L^{2}(\mathbb{R})$, it follows by the DCT , that \tilde{f} is continuous. In particular, by a bootstrap argument, any eigenvector of non-zero eigenvalue, of either T_{1} or T_{2}, is a smooth function. So, it follows that

$$
\sigma_{p}\left(T_{1}\right) \backslash\{0\}=\sigma_{p}\left(T_{2}\right) \backslash\{0\} .
$$

We can also observe that if f is an igenvector of eigenvalue $\{0\}$ of either operator, differentiating twice we see that f must satisfy that

$$
0=-\int_{0}^{x} y f(y) \mathrm{d} y+\int_{x}^{1} f(y)(1-y) \mathrm{d} y
$$

and that

$$
0=-x f(x)+(x-1) f(x)=-f(x),
$$

for a.e. $x \in[0,1]$. This implies that $f \equiv 0$. In other words $0 \notin \sigma_{p}\left(T_{j}\right)$.
As a consequence, we have that

$$
\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)
$$

2. Now, if $\lambda \in \sigma_{p}\left(T_{1}\right) \backslash\{0\}$, we have that f must satisfy the second order ODE

$$
\lambda f^{\prime \prime}(x)=-f(x)
$$

with boundary conditions $f(1)=0$ and $f(0)=0$. The non-trivial solutions of this BVP are given by constant multiples of

$$
f_{k}(x)=\sin (k \pi x), \quad k=1,2,3 \ldots
$$

where $\lambda_{k}=(k \pi)^{-2}$, which are eigenvalues of multiplicity one.
A calculation shows

$$
\int_{0}^{1} f_{k}(x)^{2} \mathrm{~d} x=\frac{1}{2}
$$

and we know that two eigenvectors of different eigenvalues are orthogonal to each other. Hence

$$
g_{k}(x)=\sqrt{2} \sin (k \pi x)
$$

form an orthonormal system in $L^{2}[0,1]$.
By the Hilbert-Schmidt theorem, since we have shown that $\operatorname{ker} T_{2}=\{0\}$, we have that $\left\{g_{k}\right\}_{k \geq 1}$ is a orthonormal basis of $L^{2}[0,1]$. And we also have that for all $f \in L^{2}[0,1]$

$$
T_{2} f(x)=\sum_{k \geq 1} \frac{2}{k^{2} \pi^{2}}\left\langle f, f_{k}\right\rangle \sin (k \pi x),
$$

where

$$
\left\langle f, f_{k}\right\rangle=\int_{0}^{1} f(x) \sin (k \pi x) \mathrm{d} x
$$

