
For each project I include some suggested core goals, and some further pos-

sibilities. All of these though are suggestions — other directions or choices of

content can be fine

Reading suggestions are in several cases incomplete — feel free for more sug-

gestions as necessary (either if they’re missing, or if the given suggestions aren’t

to your taste). In longer references, I’ve aimed to give pointers to specific chap-

ters/sections; where these are missing, again please ask!

For any implementation projects: Use any programming language you know

and like; generally I recommend Haskell, OCaml, SML, or similar, as well-suited

to these purposes. Or, of course, use a proof assistant — Coq, Agda, Lean. . .

1 Simply typed 𝜆-calculus

Project (CCC semantics). Cartesian closed category (“CCC”) semantics of simple

type theory.

Core goals: definition of CCC’s; syntax forms a CCC; syntax can be inter-

preted in any CCC. Further possibilities: (2-)initiality of the syntactic category.

Background: a little category theory.

Literature: Awodey 2006; Harper 2016; Lambek and P. J. Scott 1986

Project (Stack machines). Stack machine operational semantics of simple type

theory.

Core goals: definition of the stack machine and execution, and termination

proof for a small core theory. Further possibilities: extension to larger theories;

comparison with other semantics ,

Literature: Harper 2016.

Project (Tait computability beyond →). Normalisation using Tait-style heredi-

tary normalisability, for systems with more type constructors than given in class.

Core goal: proof of (weak) normalisation for extension of type theory with

products, maybe a little more. Further possibilities: discussion/analysis; extension

to strong normalisation; more constructors?

Literature: Harper 2022, Angiuli 2015

Project (Normalisation strategies). Call-by-name vs call-by-value normalisation

strategies, for simple type theory.

Core goals: define these reduction strategies; informally compare, with exam-

ples. Further possibilities: some precise comparisons.

Reading: Harper 2016

Project (Implementation). A computer-implementation of a core simple type the-

ory, in some programming language.

Core goals: Define the syntax, including substitution, and some examples

demonstrating it. Further possibilities: A normaliser/evaluator; an interpreter
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into your host language; a parser for input (warning — parsers have a steep learn-

ing curve, that will be a lot of work if you haven’t done one before).

Background: Some programming experience.

Reading: Pierce 2002, Sitnikovski 2019

2 Untyped 𝜆-calculus

Project (Domain semantics). Domain semantics for untyped 𝜆-calculus (or some

other similar system, eg PCF).

Core goal: Definition of Scott domains; function domain; construction of

Scott’s 𝐷∞; interpretation of some core syntax. Further possibilities: connection

with the C-monoid analysis (see below) and/or CCC semantics (see above).

Background: A little topology.

Reading: D. S. Scott 1970, Barendregt 2012, p. V.18.2, Pitts 2012, §8, Lambek

and P. J. Scott 1986, p. II.18

Project (Equivalence with combinatory logic). Equivalence between untyped 𝜆-

calculus and SKI combinator logic (“CL”).

Core goal: Definition of the combinatory system CL; proof of the translations

between it and 𝜆-calculus, and that they are suitable mutually inverse. Further

possibilities: more comparison of the two systems, advantages of each; historical

context; relationship to C-monoid semantics (see below).

Reading: Barendregt 2012, p. II.7, Smullyan 1985 (puzzle book!)

Project (C-monoid semantics). C-monoid semantics for untyped 𝜆-calculus.

Core goal: Definition of C-monoids; interpretation of 𝜆-calculus in a C-monoid;

sketch of some example. Further possibilities: Detailed presentation of some ex-

ample (e.g. the domain 𝐷∞, see above); connection with the CCC semantics (see

above).

Reading: Lambek and P. J. Scott 1986, I.15–18

Project (Implementation). A computer-implementation of a untyped 𝜆-calculus,

in some programming language (any language you prefer, but I recommend Haskell,

OCaml, SML, or similar).

Core goals: Define the syntax, including substitution, and some examples

demonstrating it. Further possibilities: A normaliser/evaluator; an interpreter

into your host language; a parser for input (warning — parsers have a steep learn-

ing curve, that will be a lot of work if you haven’t done one before).

Background: Some programming experience.

Reading: Pierce 2002, Sitnikovski 2019

3 Dependent type theory

Project (Impredicative universes). Impredicative universes in dependent type

theory — applications, problems, connections.
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Core goals: Definition of an impredicative set universe, and at least one of the

further options. Further possibilities: impredicative encoding of inductive types;

history in Martin-Löf type theory and elsewhere; Girard’s paradox; Hurkens’

paradox; translation from System F (see below).

Reading: Martin-Löf 1984, Werner 1994.

Project (Formalisation). Formalisation in dependent type theory of some math-

ematical topic.

Core goals: Very broad topic! Pick a proof assistant (recommended: Coq,

Agda, Lean); choose some topic; and develop some material in that topic, either

using an existing library as a base or possibly (if your topic is very elementary)

starting from scratch. Ask me for topic recommendations depending on your in-

terests! Further possibilities: Contribute your formalisation to the library you’ve

used, if it’s on material not yet in there.

Experience: Some programming helpful.

Reading: Online documentation + community resources for chosen proof as-

sistant.

4 Other

Project. System F Girard’s polymorphic type thery, “system F”.

Core goal: Definition of system F. Further possibilities: Impredicative encod-

ing of inductive types; comparison with untyped 𝜆-calculus; comparison with

dependent type theory using an impredicative universe (see above); some seman-

tics.

Reading: Girard, Taylor, and Lafont 1989.
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