
Suggested solutions for DA3018 exam on 2023-05-
29
The preliminary point scoring rules is indicated for some questions. We may
adjust the scoring.

1. (a) Space complexity describes how much memory an algorithm needs
as a function of the input size.

(b) The heap property states that an element is larger or smaller, depen-
ding on whether it is a min- or max-heap, than its children.

(c) Divide-and-conquer is an algorithm strategy in which the input is
first partitioned into smaller subsets (often two), that are analyzed
independently, and then the results from the subsets is combined
together. A classic example of divide-and-conquer is Merge sort.

(d) Open addressing is used to manage collisions in hash tables. When it
is discovered that there is a collision in the hash table, other indexes
are probed systematically (for example adjacent subsequent indexes).

2. Use a single linked list and keep track of the first and last element, so a
queue Q gets a first and last reference. With first and last we can
immediately access the elements we need to maintain the queue.

Suggested implementation below. For empty? we check whether ”first”
points to an element or not.

def empty?(Q):
return Q.first == null

When inserting an element, enqueue(Q, e), we should update the last
element to point to e and then register e as the new last. Care has to be
taken with null values, because Q may be empty when enqueue. In that
case, e is set to both first and last in the queue.

def enqueue(Q, e):
v = new Node()
v.next = null
if Q.last:

Q.last.next = v
else:

Q.first = v
Q.last = v

For dequeue(Q), we make sure that there is an element to return and in
that case update first reference. If there is only one element in Q, then
the last reference also needs to be updated.

def dequeue(Q):
if Q.first == null:

return null
else:

e = Q.first
if Q.last == Q.first:

Q.last = null

1

Q.first = e.next
e.next = null // To avoid later problems
return e

Scoring for (c) and (d): 2p for getting the concept right with constant-time
operations and decent pseudocode, and 1p for also getting the details right.

3. Note: there are many ways to solve this problem.

(a) The guests are given in a guest list L, a set of names.
I suggest to quantify guest relations using a weight w(g1, g2) for two
guests g1 and g2. Seating structure is unclear, but let us be flexible
and define a graph for each party room: each chair is a vertex and
there is an edge between to vertices (chairs) if guests on those chairs
are ”close” (according to Caleb). One long table would mean a con-
nected graph and a set of k small round tables would imply a graph
with k components (probably ”cliques”). We make sure that there are
as many chairs as there are guests.
A seating of a guest list L is a mapping s from V to L, i.e., from the
chairs to the guest list, such that ∀u, v ∈ V , s(u) ̸= s(v), meaning
that no guest is assigned two seats.
To get happy guests, we want a good seating, and that is assumed
to be given by the sum of weights with people around guests at the
table. Let us define a score for happiness! The score of a seating can
be defined as

∑
(u,v)∈E w(s(u), s(v)), the sum of relation weight for

guests sitting close to each other.
This score is not perfect. For example, it can ignore seating two people
that hate each other nearby, if everyone else sits next to their favorite
people. But Caleb did not state any such specifics.
A computational problem:

• Input: A guest list L, a guest relation weighting w, and a room
graph G = (V,E), such that |V | = |L|.

• Output: A seating s maximizing
∑

(u,v)∈E w(s(u), s(v)).

Grading:

• 1p for input and output.
• 1p for clear formulation of input and output.
• 2p for a clear formulation

(b) An instance to the problem in (a) can be:

• L = [Ali,Bo,Cia], just three guests.
• w(Ali,Bo) = 1, w(Ali, Cia) = 1, w(Bo,Cia) = 1, they all like

each other,
• V = {u, v, w}, E = {(u, v), (v, w)}, so there are three chairs in a

line, like at a bar disk.

For 1p, you have to give example input to the computational problem
you defined.
Note: the empty party, with no guests and no chairs, is technically
an instance here, but how fun is that?

2

4. First note that Selection sort is O(n2) and the alternative sorts are O(n lg n).
I use the notation that lg = log2.

(a) If sorting, and in particular its comparisons, dominate the run time
then we can assume the time for the algorithm on n elements is
T (n) = Cn2, where C is the time for a comparison. Disa noticed that
T (103) = 60s, so we get the equation 106C = 60, giving C = 6×10−5.
So a comparison takes about 0.06 ms.
Grading :

• Clear and reasonable assumptions: 1p.
• A calculation giving a reasonable answer: 1p.

(b) Replacing Selection sort with a fast sort means that the algorithm’s
sorting probably is probably still dominated by the sorting. We may
have a hidden factor that becomes relevant with faster sorting, but
the only information we have is that sorting is a ”crucial part” and an
observation that sort has ”dominated” computing time. With compa-
risons taking 0.06 ms, it is reasonable to assume sorting can still be
expensive.
If T ′(n) ≈ Cn lg n, then the time needed will be about C×103×lg 103.
The log-factor is annoying here, but there are two ways to deal with
it.

• We can use that 210 = 1024, and some of us computer nerds just
know that. Therefore, lg 1000 ≈ 10.

• We can use our log-laws and note that lg 103 = 3 lg 10. And
since 23 = 8 and 24 = 16, we can notice that 3 < lg 10 < 4. That
suggests a guesstimate of lg 10 ≈ 3.3, and then 3 lg 10 ≈ 10. Even
with under- or overestimates (from 3 < lg 10 < 4), we will get
something close to 10, so nothing to worry about.

Combine this with our estimate C ≈ 6×10−5 comparisons per second:
C × 103 × lg 103 ≈ 6× 10−5 × 104 ≈ 0.6 seconds.
Is the answer reasonable? We are ”almost” removing a factor n from
the original algorithm, and we go from 60 seconds to 0.6 seconds, so
yes that is reasonable when we have n = 1000. Grading :

• Clear and reasonable assumptions: 1p.
• A reasonable calculation: 2p.

5. The time complexity analysis here is based on addition and multiplications
taking unit time.

(a) The first algorithm does some preparations on lines 2 and 3, con-
stant time assignments, and is iterating n times. In each iteration a
constant number of unit-time operations are done. Hence, the time
complexity is O(1) + (n+ 1)×O(1) = O(n).
Grading : clear assumptions and noting iteration 1p; conveying that
iteration brings the O(n) term is another 1p.

(b) In the second algorithm, we have basically the same computations,
but must notice that power function is O(i) because it computes xi

and that requires i iterations. So in iteration i, we are doing O(i)

3

work. Adding up the time complexity, lines 2 and 3 are O(1) and
then in each iteration there is O(i) + O(1) = O(i) work, so in total
it is O(1) +

∑n
i=0 O(i) = O(n2).

Grading : noting that the extra function is additional work: 1p; ma-
king a reasonable argument of the amount of extra work: 1p; a correct
logic on full time complexity: 1p.

(c) For Horner’s method, we can let T (n) describe the time complexity
for an n-degree polynomial. A call to the function horners_eval has
an array lookup, an addition, and a multiplication with the result of
Horner’s method on a n− 1-degree polynomial.
This can be described as T (0) = O(1) and, for n > 0, T (n) = O(1)+
T (n− 1). One can note that we ”remove” one term of the polynomial
per recursive call and will therefore eventually reach the base case.
In that case there has been n recursive calls, each invoking O(1) unit
time operations, giving O(n) time complexiy.
Grading:

• Clear and reasonable assumptions, and identifying recursion in
a constructive way: 1p.

• Reasoning logically about recursion: 2p.
• Getting the correct answer: 1p.

(d) In the ”competing” methods, say poly_eval, there are two multipli-
cations (line 5 and 6) per iteration, but with Horner’s method there
is only one multiplication. The number of array/list accesses and
additions is the same, but if multiplication is costly, then Horner’s
method is faster.
One may worry about the cost of recursion in Horner’s method, but
one can rewrite the algorithm to a plain iteration instead. Also, in so-
me programming languages and compilers, the cost of using recursion
here is zero or close to zero.
Grading:

• Observing and counting the multiplications: 2p

(e) A single-linked list needs space for the value and a pointer to the
next element. Using a single-linked list for polynomial coefficients,
we should store floats as values.
A Java float is 8 bytes (I looked it up). References (or pointers) on a
modern computer also uses 8 bytes. (It has been pointed out to me
that my calculations for 32-bit computers are outdated!)
An n-degree polynomial needs n+ 1 coefficients, so in total we need
(n+ 1)× (8 + 8) bytes = 16n+ 16 bytes.
I do not think it makes sense to bring in the storage for the reference
to the list here (that would be another 8 bytes), but I accept that
some would like to add that.
Grading:

• Reasonable space assumptions: 1p
• Correct estimate: 1p.
• Deducting 0.5p if missing the +1 for the zero-degree term.

4

6. (a) Given that Max is using a graph for the game map, with vertices
representing ”points of interest” and the graph will therefore probably
be constrained to reflect geography (for the enthusiasts: it will be
planar and Euclidian). To easily computing the distance from the
current vertex v (where the game player is located), we can adapt
Breadth-First Search to compute the distance from v. This runs in
time linear in number of vertices and edges in the graph. Having
the distance d (as number of edges away) allows for mapping to a
brightness factor, perhaps something like 1/d.
We can decide to iterate through pairs of vertices and compute d as
the geographical distance on the map. This implies a time complexity
of O(|V |2) which may be worse than using BFS.
With a large map, maybe we should combine these methods: using
BFS we find the nearby vertices efficiently and spend some extra time
computing geographical distance for those.

(b) What Max is worried about here is whether the graph for the ga-
me map is connected. We can adapt Depth-First Search to compute
connected components, as noted during the course. This is efficient,
because the computation is again O(|V | + |E|). However, according
to the problem, Max is only interested in a decision of connectedness,
not which components exists. The latter is of course useful when de-
termining where there might be a problem, but may not be necessary.
In the BFS algorithm, we keep track of whether a vertex has been
visited or not. This indicator can of course be used, after BFS is done,
to see what vertices has not been visited.

5

7. A suggested solution below.

I suggest using nodes with child references left and right. We will traverse
the tree recursively and return the subtrees we want to have. So nodes are
removed by not being returned. Instead, its child is returned.

• The null-tree is a good base case, so that we can handle all possible
input.

• If exactly one child is null, then the current vertex (the input to the
current function call) should be removed and we implement that by
not returning it. Instead, whatever is left after recursing on its child.

• Otherwise we either have a leaf or a node with two children. Proceed
recursively to simplify the children. In case of a leaf, both children
are null references, but the base case will handle that for us.

def simplify_tree(t):
if t == null:

return null
else:

if t.left != null and t.right == null:
One child: skip current node
return simplify_tree(t.left)

else if t.left == null and t.right != null:
One child: skip current node
return simplify_tree(t.right)

else:
Two children or a leaf
t.left = simplify_tree(t.left)
t.right = simplify_tree(t.right)
return t

Grading: Base-score is 5, and then we deduct for mistakes. Some examples:

• -2p for no base case.

• -1p for unsuitable base case, for example not handling the empty tree
well as input.

• -1p for broken recursive calls.

• -1p for forgotten case.

6

