Exam: Introduction to Finance Mathematics (MT5009), 2023-05-17

Examiner: Kristoffer Lindensjö; kristoffer.lindensjo@math.su.se, 08-16 4507
Allowed aid: Calculator (provided by the department).
Return of exam: To be announced via the course webpage or the course forum.
The exam consists of five problems. Each problem gives a maximum of 10 points.

- The reasoning should be clear and concise.
- Answers should be motivated (unless otherwise stated).
- Any assumptions should be clearly stated and motivated.
- Start every problem on a new sheet of paper.
- Clearly number each sheet with problem number and sheet order.
- Write your code number (but no name) on each sheet.

Preliminary grading:

A	B	C	D	E
46	41	36	30	25

Good luck!

Problem 1

Consider a market with constant annual interest rate $R=3 \%$. The current time is $t=0$.
(A) Consider a bond with face value $F=100$, annual coupons $C=20$ and maturity in 3 years. What is the current value of the bond?
(B) Consider a person who deposits a certain amount C each year in a bank account (with the interest rate stated above). There are altogether 5 deposits.

How large does the deposit C have to be in order for the bank account to contain 400000 SEK exactly 1 year after the last deposit is made?

Problem 2

(A) Consider a market consisting of two stocks, with expected returns $\mu_{1}=$ 0.2 and $\mu_{2}=0.3$, and standard deviations of returns $\sigma_{1}=0.2$ and $\sigma_{2}=0.3$ respectively. The correlation between returns of the two stocks is $\rho_{12}=0.3$.

Compute the minimum variance portfolio corresponding to these two stocks.
Hint:

$$
\begin{equation*}
w_{M V P}=\frac{u C^{-1}}{u C^{-1} u^{T}} \tag{1}
\end{equation*}
$$

(B) State the optimization problem that corresponds to the minimum variance portfolio. Solve the problem by deriving an expression for $w_{m v p}$ when considering only two stocks. Your derivation should not rely on using the formula in (1) explicitly.

Problem 3

Consider a European call option with strike price $X=10$ and expiry at time 1, on an underlying with asset price process $S(t)$.

The financial model is a one-period binomial model $t=0,1$, with $S(0)=10$, $U=0.2, D=-0.1$, and $R=0.1$ (risk-free interest rate with 1 year periodic compounding).

As usual we use the notation $S^{u}=S(0)(1+U)$ and $S^{d}=S(0)(1+D)$.
(A) Find the replicating portfolio $(x(1), y(1))$ for the call option.
(B) Use the replicating portfolio to find the value of the call option, $C_{E}(0) .(2 \mathrm{p})$
(C) Find the value of the call option, $C_{E}(0)$, using the risk-neutral valuation formula.

Problem 4

Suppose we have a one-period binomial model, with

$$
R=0.1, \quad U=0.2, \quad D=-0.1, \quad S(0)=1
$$

Consider a put option with strike price $X=1.1$ and expiry time $t=1$.
(A) Find the value of the put $P_{E}(0)$ assuming it is European.
(B) Find the value of the put $P_{A}(0)$ assuming it is American.

Problem 5

Consider a European call option and a European put option. For both options hold that the exercise time is T and the strike price is X and the underlying share (which pays no dividends) is the same. The continuously compounded interest rate is r.

State and prove the corresponding put-call parity.
Hints:
(1) Recall that the put-call parity is that a certain relationship between $C_{E}(0), P_{E}(0), X, S(0), T$ and r holds.
(2) The proof may consist of identifying a suitable replicating portfolio (replicating a certain combination of the options).

