STOCKHOLMS UNIVERSITET, MATEMATISKA INSTITUTIONEN,
Avd. Matematisk statistik

Suggested solutions

Exam: Introduction to Finance Mathematics (MT5009), 2023-05-17

Problem 1

(A) The value is

$$
\frac{20}{1.03^{1}}+\frac{20}{1.03^{2}}+\frac{120}{1.03^{3}}=148,0864
$$

(B) We look for a constant C such that

$$
C \sum_{i=1}^{5}(1+R)^{i}=400000
$$

which is equivalent to

$$
C=\frac{400000}{\sum_{i=0}^{5}(1+R)^{i}-1}
$$

Since

$$
\sum_{i=0}^{n}(1+R)^{i}=\frac{(1+R)^{n+1}-1}{R}
$$

we thus obtain

$$
C=\frac{400.000}{\frac{(1+0.03)^{6}-1}{0.03}-1} \approx 73147.406
$$

Problem 2

(A) Using the notation in Capinski \& Zastawniak, we have

$$
C=\left(\begin{array}{cc}
\sigma_{1}^{2} & c_{12} \\
c_{12} & \sigma_{2}^{2}
\end{array}\right)
$$

so that

$$
C^{-1}=\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}-c_{12}^{2}}\left(\begin{array}{cc}
\sigma_{2}^{2} & -c_{12} \\
-c_{12} & \sigma_{1}^{2}
\end{array}\right) .
$$

Using the above we find with basic calculations

$$
w_{M V P}=\frac{u C^{-1}}{u C^{-1} u^{T}}=\frac{1}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 c_{12}}\left(\sigma_{2}^{2}-c_{12} \quad \sigma_{1}^{2}-c_{12}\right) .
$$

Using $c_{12}=p_{12} \sigma_{1} \sigma_{2}$ we obtain by plugging in the numbers

$$
w_{M V P} \approx\left(\begin{array}{ll}
0.7660 & 0.2340
\end{array}\right)
$$

(B) The optimization problem is:

$$
\begin{array}{cc}
\operatorname{minimize}_{w} & \mathrm{wCw}^{T} \\
\text { subject to } & w u^{T}=1 .
\end{array}
$$

The constraint is equivalent to setting $w=(1-x, x)$ for some x (to see this use that $u=(1,1)$ by definition). Hence, the problem is equivalent to maximizing

$$
w C w^{T}=(1-x)^{2} \sigma_{1}^{2}+2 c_{12} x(1-x)+\sigma_{2}^{2} x^{2}
$$

over x. Differentiating this expression and setting it to zero (which clearly gives the minimum) gives

$$
x\left(2 \sigma_{1}^{2}+2 \sigma_{2}^{2}-4 c_{12}\right)-2 \sigma_{1}^{2}+2 c_{12}=0
$$

This gives us

$$
x=\frac{\sigma_{1}^{2}-c_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 c_{12}}
$$

which in turn gives (with basic calculations)

$$
1-x=\frac{\sigma_{2}^{2}-c_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 c_{12}}
$$

so that the solution to the problem is

$$
\begin{aligned}
w_{m v p} & =(1-x, x) \\
& =\frac{1}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 c_{12}}\left(\sigma_{2}^{2}-c_{12}, \sigma_{1}^{2}-c_{12}\right)
\end{aligned}
$$

(Note that this is in line with the answer in (A)).

Problem 3

(A) The replicating portfolio satisfies by definition

$$
\begin{aligned}
x(1) S^{u}+y(1)(1+R) & =\max \left\{S^{u}-X ; 0\right\} \\
x(1) S^{d}+y(1)(1+R) & =\max \left\{S^{d}-X ; 0\right\},
\end{aligned}
$$

where $x(1)$ is the number of shares and $y(1)$ is the amount of money in the risk-free asset in the replicating portfolio.

Note that $S^{u}=S(0)(1+U)=12$ and $S^{u}=S(0)(1+D)=9$. By plugging in numbers we see that the replicating portfolio should satisfy

$$
\begin{aligned}
x(1) 12+y(1) 1.1 & =2 \\
x(1) 9+y(1) 1.1 & =0 .
\end{aligned}
$$

Solving this equation system gives the replicating portfolio $x(1)=0.6667$ and $y(1)=-5.4545$.
(B) The value of the option is now found by recalling that the value of the option is equal to the value of the replicating portfolio. Plugging in numbers gives

$$
C_{E}(0)=x(1) S(0)+y(1)=1.2121
$$

(C) Using the risk-neutral valuation formula we find

$$
\begin{aligned}
C_{E}(0) & =\frac{1}{(1+R)} E_{*}\left[(S(1)-x)_{+}\right] \\
& =\frac{1}{(1+R)}\left[p_{*}\left(S^{u}-X\right)_{+}+\left(1-p_{*}\right)\left(S^{d}-X\right)_{+}\right]
\end{aligned}
$$

Recall that $p_{*}=\frac{R-D}{U-D}=\frac{2}{3}$. Plugging in numbers and using basic calculations we again find

$$
C_{E}(0)=1.2121
$$

Problem 4

(A) The value of the European put is

$$
\begin{aligned}
P_{E}(0) & =\frac{1}{(1+R)}\left[p_{*}\left(X-S^{u}\right)_{+}+\left(1-p_{*}\right)\left(X-S^{d}\right)_{+}\right] \\
& =\frac{1}{(1+R)}\left[\frac{R-D}{U-D}(1.1-1.2)_{+}+\left(1-\frac{R-D}{U-D}\right)(1.1-0.9)_{+}\right] \\
& =\frac{1}{(1+0.1)}[0.6666667 \cdot 0+(1-0.666667) \cdot 0.2] \\
& =0.0606
\end{aligned}
$$

(B) The value of the American put is

$$
P_{A}(0)=\max \left\{(X-S(0))_{+} ; P_{E}(0)\right\}
$$

so that

$$
P_{A}(0)=\max \left\{(1.1-1)_{+} ; 0.0606\right\}=0.1
$$

Problem 5

The put call-parity is

$$
C_{E}(0)-P_{E}(0)=S(0)-X e^{-r T}
$$

The following is one way of proving the put call-parity (there are also other reasonable ways).

Note that the payoff of one call and one short put is

$$
\max \{S(T)-X ; 0\}-\max \{X-S(T) ; 0\}=S(T)-X
$$

Hence, we can replicate (from the viewpoint of $t=0$) the payoff of one call and one short put by having one share and loan corresponding to the amount $X e^{-r T}$ (which means we have to pay back X at T). Hence, by the no-arbitrage principle, the value of the replicating portfolio, $S(0)-X e^{-r T}$, must be equal to the value of one call and one short put, which is $C_{E}(0)-P_{E}(0)$. The result follows.

