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Problem 1
(A) The value is
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(B) We look for a constant C' such that
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we thus obtain
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Problem 2
(A) Using the notation in Capinski & Zastawniak, we have
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Using the above we find with basic calculations
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Using c12 = p120102 we obtain by plugging in the numbers
wyyp ~ (0.7660 0.2340)

(B) The optimization problem is:

minimize,, wCwT
subject to wul =1.

The constraint is equivalent to setting w = (1 — z, z) for some x (to see this use
that u = (1,1) by definition). Hence, the problem is equivalent to maximizing

wCw” = (1 —2)%0? 4+ 2c192(1 — x) + 052>

over z. Differentiating this expression and setting it to zero (which clearly gives
the minimum) gives
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This gives us
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which in turn gives (with basic calculations)
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so that the solution to the problem is
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(Note that this is in line with the answer in (A)).

Problem 3
(A) The replicating portfolio satisfies by definition

z(1)S* +y(1)(1 + R) = maz{S* — X; 0}
z(1)S? + y(1)(1 + R) = max{S? — X;0},
where x(1) is the number of shares and y(1) is the amount of money in the
risk-free asset in the replicating portfolio.
Note that S* = S(0)(1 4+ U) = 12 and S* = S(0)(1 + D) = 9. By plugging
in numbers we see that the replicating portfolio should satisfy
(1124 y(1)1.1=2
z(1)94+y(1)1.1=0.



Solving this equation system gives the replicating portfolio z(1) = 0.6667 and
y(1) = —5.4545.

(B) The value of the option is now found by recalling that the value of the
option is equal to the value of the replicating portfolio. Plugging in numbers
gives

Cp(0) = 2(1)S(0) + y(1) = 1.2121.

(C) Using the risk-neutral valuation formula we find

Co(0) = Ty B (S = )]
= g P~ X+ (- p(8 - X))

Recall that p, = =8 — % Plugging in numbers and using basic calculations
we again find
Cg(0) = 1.2121.

Problem 4
(A) The value of the European put is
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= m [0.666667 - 0 + (1 — 0.666667) - 0.2]

= 0.0606.

(B) The value of the American put is
PA(0) = maz{(X — 5(0)); Pi(0))
so that

PA(0) = maz{(1.1 — 1);;0.0606} = 0.1.

Problem 5
The put call-parity is
Cg(0) — Pg(0) = S(0) — Xe T,

The following is one way of proving the put call-parity (there are also other
reasonable ways).
Note that the payoff of one call and one short put is

max{S(T) — X;0} — max{X — S(T);0} = S(T) — X,



Hence, we can replicate (from the viewpoint of ¢ = 0) the payoff of one call
and one short put by having one share and loan corresponding to the amount
Xe T (which means we have to pay back X at T'). Hence, by the no-arbitrage
principle, the value of the replicating portfolio, S(0) — Xe™"”, must be equal
to the value of one call and one short put, which is Cg(0) — Pg(0). The result
follows.



