No calculators, books, or other resources allowed. The total score is 24 points. The subsequent oral exam has a maximum of 6 points. An overall total of 15 points plus a successful completion of the group project are required to pass.

Problem 1 (4 Points)
Find all solutions to the differential equation $x^{\prime}(t)+t x(t)=t^{2}+4 t+1$.

Problem 2 (4 Points)
Use the power series method to find the solution to the initial value problem:

$$
\begin{aligned}
x^{\prime \prime}(t)-2 t x^{\prime}(t)+x(t) & =0 \\
x(0) & =1 \\
x^{\prime}(0) & =0
\end{aligned}
$$

Problem 3 (4 Points)

Solve the following initial value problem via the Laplace transform:

$$
\begin{aligned}
x^{\prime \prime}(t)-x(t) & =t \\
x(0) & =0 \\
x^{\prime}(0) & =0
\end{aligned}
$$

(Hint: Recall that the Laplace transform of the function $f(t)=t$ equals $\frac{1}{s^{2}}$.)

Problem 4 (4 Points)
Find a fundamental matrix for the homogeneous system $x^{\prime}(t)=A x(t)$ with

$$
A=\left(\begin{array}{ccc}
7 & 0 & -1 \\
0 & 2 & 0 \\
4 & 0 & 3
\end{array}\right)
$$

Problem 5 (4 Points)

We consider the boundary conditions $y(0)=y(1), y^{\prime}(0)=0$ on the interval $[0,1]$.
(1) Give an example (with proof) of a 2 nd order linear ODE for which the associated boundary value problem has a unique solution.
(2) Give an example (with proof) of a 2 nd order linear ODE for which the associated boundary value problem does not have a unique solution.

Problem 6 (4 Points)

Consider the autonomous system

$$
\left\{\begin{array}{l}
x^{\prime}=-3 x+5 y \\
y^{\prime}=(x-y)(\cos (x+y)-2)
\end{array}\right.
$$

What are its equilibrium points? Determine for each of the equlibrium points wheter it is stable, asymptotically stable or unstable.

