No calculators, books, or other resources allowed. The total score is 24 points. The subsequent oral exam has a maximum of 6 points. An overall total of 15 points plus a successful completion of the group project are required to pass.

VERSION INCLUDING SOLUTIONS

Problem 1 (4 points)
Find all solutions to the differential equation $x^{\prime}(t)+t x(t)=t^{2}+4 t+1$.
Solution: The ODE is linear, hence every solution can be uniquely written as the sum of a particular solution and a solution to the corresponding homogeneous equation. The homogeneous equation $x^{\prime}(t)+t x(t)=0$ is of order 1 , hence its space of solutions is 1-dimensional. Moreover, we learnt the following formula for solutions in class:

$$
x(t)=c e^{-\int_{0}^{t} \tau d \tau}=c e^{-t^{2} / 2} ; c \in \mathbb{R} .
$$

Alternatively, it could be solved by separating $x(t)$ and t.
To find a particular solution we use a polynomial Ansatz, since the right hand side of the equation is a polynomial and the left hand side is also a polynomial when x is. More precisely, in that case the left hand side is a polynomial of degree one larger than that of x. Hence x would have to be of degree 1 to be a solution, i.e., $x(t)=a t+b$ and $x^{\prime}(t)=a$. We arrive at the equation

$$
a+t(a t+b)=t^{2}+4 t+1
$$

which holds if and only if $a=1$ and $b=4$. In summary, the solutions are given by $x(t)=c e^{-t^{2} / 2}+t+4$ for all $c \in \mathbb{R}$.

Problem 2 (4 Points)
Use the power series method to find the solution to the initial value problem:

$$
\begin{aligned}
x^{\prime \prime}(t)-2 t x^{\prime}(t)+x(t) & =0 \\
x(0) & =1 \\
x^{\prime}(0) & =0
\end{aligned}
$$

Solution: We assume that $x(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ solves the ODE and want to solve for the a_{k}. We have

$$
x^{\prime \prime}(t)=\sum_{k=2}^{\infty} k(k-1) a_{k} t^{k-2}=\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} t^{k}
$$

and

$$
t x^{\prime}(t)=\sum_{k=1}^{\infty} k a_{k} t^{k-1} t=\sum_{k=0}^{\infty} k a_{k} t^{k}
$$

Hence, $x^{\prime \prime}(t)-2 t x^{\prime}(t)+x(t)$ is again a power series with k th coefficient equal to

$$
(k+2)(k+1) a_{k+2}-2 k a_{k}+a_{k}=(k+2)(k+1) a_{k+2}+(1-2 k) a_{k}
$$

This expression equals 0 if and only if

$$
a_{k+2}=\frac{2 k-1}{(k+2)(k+1)} a_{k}
$$

This gives a recursive formula. Note that we are given $a_{0}=x(0)=1$ and $a_{1}=x^{\prime}(0)=0$. The latter implies that $a_{k}=0$ whenever k is an odd number. For $k=2 l$ even we obtain

$$
a_{k}=\frac{\prod_{i=1}^{l}(4 i-5)}{k!} .
$$

Problem 3 (4 points)

Solve the following initial value problem via the Laplace transform:

$$
\begin{aligned}
x^{\prime \prime}(t)-x(t) & =t \\
x(0) & =0 \\
x^{\prime}(0) & =0
\end{aligned}
$$

(Hint: Recall that the Laplace transform of the function $f(t)=t$ equals $\frac{1}{s^{2}}$.)
Solution: For now we assume that x is a solution such that the Laplace transform L can be applied to x, x^{\prime} and $x^{\prime \prime}$. Since $x(0)=0=x^{\prime}(0)$ the formula for Laplace transforms of derivatives simplifies in this case to $L\left[x^{\prime \prime}\right]=s^{2} L[x]$. We obtain the equation

$$
s^{2} L[x]-L[x]=\frac{1}{s^{2}} .
$$

Solving for $L[x]$ gives

$$
L[x]=\frac{1}{s^{2}\left(s^{2}-1\right)}=\frac{1}{s^{2}(s-1)(s+1)}
$$

We use partial fraction decomposition and want to find A, B, C, D such that

$$
\frac{A}{s-1}+\frac{B}{s+1}+\frac{C}{s}+\frac{D}{s^{2}}=\frac{1}{s^{2}(s-1)(s+1)}
$$

This equation holds if and only if

$$
A(s+1) s^{2}+B(s-1) s^{2}+C\left(s^{2}-1\right) s+D\left(s^{2}-1\right)=1
$$

or in other words

$$
(A+B+C) s^{3}+(A-B+D) s^{2}-C s-D=1
$$

We first find that $D=-1$ and $C=0$, and consecutively it follows that $B=-A$ and $2 A=-1$. Hence

$$
\frac{1}{2(s-1)}-\frac{1}{2(s+) 1}-\frac{1}{s^{2}}=\frac{1}{s^{2}(s-1)(s+1)}
$$

We have $L^{-1}\left[\frac{1}{s-1}=e^{t}\right.$ and $L^{-1}\left[\frac{1}{s+1}=e^{-t}\right.$ by the shifting rule (and the fact that $L^{-1}\left[\frac{1}{s}\right]=1$). Hence by linearity we obtain

$$
L^{-1}\left[\frac{1}{s^{2}(s-1)(s+1)}\right]=\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}-t .
$$

The second deriviative of the function $x(t)=\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}-t$ equals $\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}$, hence x solves the ODE. Moreover, $x(0)=0$ and $x^{\prime}(0)=\frac{1}{2}+\frac{1}{2}-1=0$, so it also satisfies the initial conditions.

Problem 4 (4 Points)

Find a fundamental matrix for the homogeneous system $x^{\prime}(t)=A x(t)$ with

$$
A=\left(\begin{array}{ccc}
7 & 0 & -1 \\
0 & 2 & 0 \\
4 & 0 & 3
\end{array}\right)
$$

Solution: For a linear homogeneous system with constant coefficients we know that a fundamental matrix is given by the matrix exponential $F(t)=e^{t A}$. To compute $e^{t A}$, we decompose \mathbb{C}^{3} into generalized eigenspaces for A (and hence $t A$ for any t).
First, we note that the second basis vector is an eigenvector for the eigenvalue 2 , and that the span of the first and the third basis vector is preserved by A. Hence we can simplify and understand $e^{t B}$ for the $2 x 2$-matrix

$$
B=\left(\begin{array}{cc}
7 & -1 \\
4 & 3
\end{array}\right)
$$

The characteristic polynomial of B is given by

$$
(\lambda-7)(\lambda-3)+4=\lambda^{2}-10 \lambda+25=(\lambda-5)^{2}
$$

Hence B has only one complex eigenvalue, namely 5 , and the generalized eigenspace is all of \mathbb{C}^{2}. Since B is not diagonal, it follows that the eigenspace must be 1-dimensional. For example the second basis vector $e_{2}=(0,1)$ is not an eigenvector. It follows that $(B-5 \mathbb{1}) e_{2}=-e_{1}-2 e_{2}=(-1,-2)$ is an eigenvector, and that expressed in the basis $((-1,-2),(0,1))$ the matrix B takes the form

$$
C=\left(\begin{array}{ll}
5 & 1 \\
0 & 5
\end{array}\right)
$$

Hence we have $B=T^{-1} C T$, where

$$
T=\left(\begin{array}{ll}
-1 & 0 \\
-2 & 1
\end{array}\right)
$$

which is self-inverse, i.e., $T=T^{-1}$. Furthermore, we have

$$
e^{t C}=e^{5 t \mathbb{1}} e^{t C-5 t \mathbb{1}}=\left(\begin{array}{cc}
e^{5 t} & t e^{5 t} \\
0 & e^{5 t}
\end{array}\right)
$$

Therefore,

$$
e^{t B}=T e^{t C} T=\left(\begin{array}{cc}
e^{5 t} & t e^{5 t} \\
0 & e^{5 t}
\end{array}\right)=\left(\begin{array}{cc}
e^{5 t}+2 t e^{5} t & -t e^{5 t} \\
4 t e^{5 t} & -2 t e^{5 t}+e^{5 t}
\end{array}\right)
$$

Combining this with the matrix exponential of A restricted to the second basis vector (which is simply $e^{2 t}$), we finally obtain

$$
F(t)=e^{t A}=\left(\begin{array}{ccc}
e^{5 t}+2 t e^{5} t & 0 & -t e^{5 t} \\
0 & e^{2 t} & 0 \\
4 t e^{5 t} & 0 & -2 t e^{5 t}+e^{5 t}
\end{array}\right)
$$

Problem 5 (4 Points)
We consider the boundary conditions $y(0)=y(1), y^{\prime}(0)=0$ on the interval $[0,1]$.
(1) Give an example (with proof) of a 2 nd order linear ODE for which the associated boundary value problem has a unique solution.
(2) Give an example (with proof) of a 2 nd order linear ODE for which the associated boundary value problem does not have a unique solution.

Solution: (1): This is the 'regular' case for which most linear ODEs will work. We consider the linear ODE with constant coefficients $y^{\prime \prime}-y=0$. The eigenvalues of the characteristic polynomial are 1 and -1 , hence the space of solutions is spanned by $y_{1}(x)=e^{x}$ and $y_{2}(x)=e^{-x}$. A general solution is therefore of the form

$$
y(x)=a e^{x}+b e^{-x}
$$

with derivative $y^{\prime}(x)=a e^{x}-b e^{-x}$. Assuming $y^{\prime}(0)$ yields $a=b$. Further assuming $y(0)=y(1)$ then gives $2 a=a\left(e+e^{-1}\right)$. As $e+e^{-1} \neq 2$, this forces $a=b=0$.
(2): We consider the ODE $y^{\prime \prime}=0$, whose solutions are precisely the degree 1 polynomials $y(x)=a x+b$. Of these, all constant functions $y(x)=b$ satisfy the boundary conditions, hence the solution is not unique.
An alternative approach is to first take a non-zero function y satisfying the boundary conditions and then constructing the ODE so that y is a solution. For example, the function $y(x)=\cos (2 \pi x)$ is periodic with $y^{\prime}(0)=0$ and gives a solution of the linear ODE $y^{\prime \prime}+4 \pi^{2} y=0$.

Problem 6 (4 Points)
Consider the autonomous system

$$
\left\{\begin{array}{l}
x^{\prime}=-3 x+5 y \\
y^{\prime}=(x-y)(\cos (x+y)-2)
\end{array}\right.
$$

What are its equilibrium points? Determine for each of the equilibrium points wheter it is stable, asymptotically stable or unstable.
Solution: Note that $\cos (x+y)-2$ is never 0 , hence (x, y) is an equilibrium point if and only if $-3 x+5 y=0=x-y$. The second equation forces $x=y$, and then the first forces $x=y=0$. Hence there is a single equilibrium point $(0,0)$. To study its stability we note that the autonomous system is everywhere differentiable with derivative

$$
\left(\begin{array}{cc}
-3 & 5 \\
(\cos (x+y)-2)+(x-y)(-\sin (x+y)) & -(\cos (x+y)-2)+(x-y)(-\sin (x+y))
\end{array}\right)
$$

For $(x, y)=(0,0)$ we obtain the matrix

$$
A=\left(\begin{array}{ll}
-3 & 5 \\
-1 & 1
\end{array}\right)
$$

Its characteristic polynomial equals $p_{A}(\lambda)=(-3-\lambda)(1-\lambda)+5=\lambda^{2}+2 \lambda+2$, with roots (and hence eigenvalues for A) given by $\lambda_{1}=i-1$ and $\lambda_{2}=-i-1$. As the real parts of both λ_{1} and λ_{2} are negative, a theorem from the last course of the lecture implies that $(0,0)$ is asymptotically stable both for the autonomous system $x^{\prime}=A x$ and the original autonomous system

$$
\left\{\begin{array}{l}
x^{\prime}=-3 x+5 y \\
y^{\prime}=(x-y)(\cos (x+y)-2)
\end{array}\right.
$$

