
MATEMATISKA INSTITUTIONEN Tentamensskrivning i
STOCKHOLMS UNIVERSITET Ordinary differential equations VT 2023
Avd. Matematik 7.5 hp
Examinator: Jonathan Rohleder Aug 25, 2023

No calculators, books, or other resources allowed. The total score is 24 points. The subsequent
oral exam has a maximum of 6 points. An overall total of 15 points plus a successful completion
of the group project are required to pass.

Problem 1 (4 points)

Find the (unique) solution to

x′′(t) + 2x′(t)− 15x(t) = 30t+ 11

satisfying the initial values x(0) = 1 and x′(0) = −4.

Solution: We start by solving the associated homogeneous differential equation, which is linear
with constant coefficients of degree 2. Hence we consider its characteristic polynomial
λ2 + 2λ− 15, whose roots are given by 3 and -5 (they can be found by first checking the factors of
the constant part -15). Hence the space of solutions is spanned by the function e3t and e−5t. Next
we find one specific solution to the inhomogeneous equation, for which we apply the polynomial
approach. Since 30t+ 11 is of degree one and the degree of x′′(t) + 2x′(t)− 15x(t) will equal that
of x (assuming we choose x to be a polynomial), we are aiming for a degree one polynomial. Let
x(t) = at+ b. Then x′′(t) = 0 and x′(t) = a, hence

x′′(t) + 2x′(t)− 15x(t) = 2a− 15at− 15b = −15at+ (2a− 15b).

Setting this equal to 30t+ 11 yields a = −2 and b = −1. Hence, −2t− 1 is a solution, and the
general solution is of the form

xα,β(t) = −2t− 1 + αe3t + βe−5t

for α, β ∈ R. It remains to find α and β so that the initial values are satisfied. We have

xα,β(0) = −1 + α+ β

and

x′
α,β(0) = −2 + 3α− 5β.

Hence, we need α+ β to equal 2, and 3α− 5β to equal −2, which is satisfied precisely by
α = β = 1. In summary, the unique solution is given by

x1,1(t) = −2t− 1 + e3t + e−5t.
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Problem 2 (4 points)

Use the Laplace transform to find the solution to the following initial value problem:

x′′(t)− 3x′(t) + 2x(t) = e3t

x(0) = 1

x′(0) = 0

Solution: Let L[−](s) denote the Laplace transform. Applied to a potential solution x to the
ODE we obtain the equation

L[x′′(t)− 3x′(t) + 2x(t)](s) = (s2L[x](s)− s)− 3(sL[x](s)− 1) + 2L[x](s) =
1

s− 3
= L[e3t](s),

where we used the given initial values of x(0) and x′(0) and standard properties of the Laplace
transform. This shows that

L[x](s) =
s2 − 6s+ 10

(s− 3)(s2 − 3s+ 2)
=

s2 − 6s+ 10

(s− 3)(s− 1)(s− 2)
.

Partial fractions let us rewrite this as

L[x](s) =
1

2(s− 3)
+

5

2(s− 1)
− 2

s− 2
.

Applying the inverse Laplace transform we find that

x(t) =
1

2
e3t +

5

2
et − 2e2t.

A quick check then shows that this function indeed solves the given initial value problem.

Problem 3 (4 points)

Find a fundamental matrix for the homogeneous system x′(t) = Ax(t) with

A =

3 0 1
0 2 0
0 1 3

 .

Solution: We know that a fundamental matrix is given by the matrix exponential eAt. To
compute this, we transform A into a slightly simpler matrix. First of all, note that the first and
third basis vector already span a Jordan block for the eigenvalue 3. Since the determinant of A
equals 18 it follows that the other eigenvalue must equal 2. Solving for an eigenvector yields
(1, 1,−1) as a possible choice. Hence, expressed in this basis (i.e., (1, 0, 0), (0, 0, 1), (1, 1,−1)) the
matrix exponential takes the form e3t te3t 0

0 e3t 0
0 0 e2t

 .

It remains to transform back to the original basis, i.e., to multiply with the matrix1 0 1
0 0 1
0 1 −1


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from the left and with its inverse 1 −1 0
0 1 1
0 1 0


from the right. Multiplied out we obtain

eAt =

e3t −e3t + te3t + e2t te3t

0 e2t 0
0 e3t − e2t e3t

 .

Problem 4 (4 points)

Consider the following boundary problem. Compute its associated Green’s function and express
the solution in terms of it.

y′′(x)− y(x) = x4 + 1

y(0) = 0

y(1) = 0

Solution: The boundary conditions are separable, hence Green’s function can be determined via
the Wronskian function. For this we have to find a non-zero twice differentiable function y1(x)
satisfying y′′1 (x)− y1(x) = 0 and y(0) = 0, as well as a function y2(x) satisfying the same
differential equation and y2(1) = 0. The solution space to y′′(x)− y(x) = 0 is spanned by the
functions ex and e−x. It follows that we can take

y1(x) = ex − e−x,

and

y2(x) = ex − e2e−x = ex − e2−x.

The wronskian w(x) = y1y
′
2 − y2y

′
1 hence computes as

w(x) = (ex − e−x)(ex + e2−x)− (ex − e2−x)(ex + e−x),

which multiplies out to

w(x) = e2x + e2 − 1− e2−2x − e2x − 1 + e2 + e2−2x = 2(e2 − 1).

Hence, Green’s function is given by

G(x, ξ) =

{
y1(x)y2(ξ)

w(ξ) = (ex−e−x)(eξ−e2−ξ)
(2e2−2) 0 ≤ x < ξ

y2(x)y1(ξ)
w(ξ) = (eξ−e−ξ)(ex−e2−x)

(2e2−2) ξ < x ≤ 1

It follows that the solution to the boundary value problem is given by

u(x) =

∫ 1

0

G(x, ξ)(ξ4 + 1)dξ.
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Problem 5 (4 points)

For which k ∈ R and L > 0 does there exist a non-trivial solution on the interval [0, L] to the
equation y′′(t) + ky(t) = 0 with y(0) = y(L) = 0? Prove your answer.

Solution: The equation y′′(t) + ky(t) = 0 is linear with constant coefficients, hence the
Picard-Lindelöf theorem implies that the space of solutions is two-dimensional. We have to check
for which k and L it contains a non-trivial function satisfying the boundary conditions.

Case 1, k = 0: In that case the solution space consists of all (affine) linear functions at+ b. Every
non-trivial such function only intersects the 0-line in at most one point. Hence there does not
exist a non-trivial solution.

Case 2, k < 0: A general solution is of the form x(t) = ae
√
−kt + be−

√
−kt. The requirement

x(0) = 0 forces a = −b. Hence the second boundary condition becomes

a(e
√
−kL − e−

√
−kL) = 0.

Note that e
√
−kL > 1 for all L > 0, and e−

√
−kL < 1 for all L > 0. Hence there cannot be a

non-trivial solution.

Case 3, k > 0: A general solution is of the form x(t) = a sin(
√
kt) + b cos(

√
kt). The requirement

x(0) = 0 forces b = 0. The second boundary condition than requires x(L) = a sin(
√
kL) = 0. For

a ̸= 0 this holds if and only if
√
kL is an integer-multiple of π, i.e., when

√
kL = nπ for some

n ∈ Z.

Problem 6 (4 points)

(1) Show that the autonomous systems{
x′ = y

y′ = −x

and {
x′ = y(x2 + y2)

y′ = −x(x2 + y2)

have the same orbits. That is, their solution curves only differ by a reparametrization.
(Hint: First describe the solution curves for the first autonomous system and then show
that a reparametrization solves the second).

(2) Compute the equilibrium points for both systems and determine whether they are stable,
asymptotically stable or unstable.

Solution: (1): The solution curves to the first system are given by (r sin(t), r cos(t)) for r a
non-negative real number, and shifts thereof. These describe circles of radius r around the origin
and hence cover all the points.
For the second system we note that the expression x2 + y2 is constant on each of these circles, i.e.,
the orbits of the first system. Hence, the phase portrait of the second system is the same as that of
the first, only scaled by the square of the radius of the respective circle. It follows that the solution
curve to the second system is a rescaling of that of the first by that factor. Hence we find that
(r sin(r2t), r cos(r2t)) describes the solution curves to the second (which a quick check verifies).
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(2): Equilibrium points as well as their stability only depend on the orbits, which in both cases we
have computed to be the circles around the origin. It follows that 0 is the only equilibrium point,
which is stable but not asymptotically stable.
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